Research article Special Issues

Research on the efficiency of agro-tourism integration in China: Based on the DEA cross-efficiency model

  • Received: 03 May 2023 Revised: 27 June 2023 Accepted: 12 July 2023 Published: 20 July 2023
  • MSC : 90C08

  • The efficiency of agro-tourism integration has become an important research object in evaluating agricultural efficiency. However, traditional efficiency evaluation theories and methods assume that all decision-making units are independent of each other and cannot effectively deal with the complex relationship between agriculture and tourism development. Based on the cooperative relationship between agriculture and tourism, this study constructed a data envelopment analysis (DEA) model based on cross-efficiency. It used ten input variables and six output variables from the agricultural and tourism systems to analyze the efficiency of agro-tourism integration in 31 provinces in mainland China from 2010 to 2019. The research results show that the efficiency of agro-tourism integration in China is relatively high and tourism significantly promotes agriculture. Still, the promotion efficiency of agriculture on tourism is low and the integration efficiency of agriculture and tourism in different provinces is significantly different with spatially differentiated features. From the perspective of dynamic trends, hot and sub-hot spots continue to gather in the developed eastern provinces, while cold spots and sub-cold spots mainly gather in the northwest region. Finally, eight indicators were selected to analyze the reasons for forming the spatial differentiation characteristics of China's efficiency of agro-tourism integration.

    Citation: Huajin Li, Songbiao Zhang, Yue Deng, Huilin Wang. Research on the efficiency of agro-tourism integration in China: Based on the DEA cross-efficiency model[J]. AIMS Mathematics, 2023, 8(10): 23164-23182. doi: 10.3934/math.20231178

    Related Papers:

  • The efficiency of agro-tourism integration has become an important research object in evaluating agricultural efficiency. However, traditional efficiency evaluation theories and methods assume that all decision-making units are independent of each other and cannot effectively deal with the complex relationship between agriculture and tourism development. Based on the cooperative relationship between agriculture and tourism, this study constructed a data envelopment analysis (DEA) model based on cross-efficiency. It used ten input variables and six output variables from the agricultural and tourism systems to analyze the efficiency of agro-tourism integration in 31 provinces in mainland China from 2010 to 2019. The research results show that the efficiency of agro-tourism integration in China is relatively high and tourism significantly promotes agriculture. Still, the promotion efficiency of agriculture on tourism is low and the integration efficiency of agriculture and tourism in different provinces is significantly different with spatially differentiated features. From the perspective of dynamic trends, hot and sub-hot spots continue to gather in the developed eastern provinces, while cold spots and sub-cold spots mainly gather in the northwest region. Finally, eight indicators were selected to analyze the reasons for forming the spatial differentiation characteristics of China's efficiency of agro-tourism integration.



    加载中


    [1] A. Fleischer, A. Tchetchik, Does rural tourism benefit from agriculture?, Tourism Manage., 26 (2005), 493–501. https://doi.org/10.1016/j.tourman.2003.10.003 doi: 10.1016/j.tourman.2003.10.003
    [2] C. Quintas-Soriano, A. J. Castro, H. Castro, M. García-Llorente, Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands, Land Use Pol., 54 (2016), 534–548. https://doi.org/1016/j.landusepol.2016.03.011
    [3] Y. Liu, X. Cheng, Does agro-ecological efficiency contribute to poverty alleviation? An empirical study based on panel data regression, Environ. Sci. Pollut. Res., 29 (2022), 51892–51908. https://doi.org/10.1007/s11356-022-19408-3 doi: 10.1007/s11356-022-19408-3
    [4] J. Yang, R. X. Yang, M. H. Chen, C. Su, Y. Zhi, J. Xi, Effects of rural revitalization on rural tourism, J. Hosp. Tour. Manag., 47 (2021), 35–45. https://doi.org/10.1016/j.jhtm.2021.02.008 doi: 10.1016/j.jhtm.2021.02.008
    [5] G. R. Jiang, How does agro-tourism integration influence the rebound effect of China's agricultural eco-efficiency? An economic development perspective, Front. Environ. Sci., 10 (2022), 136–149. https://doi.org/10.3389/fenvs.2022.921103 doi: 10.3389/fenvs.2022.921103
    [6] E. Panyik, C. Costa, T. Ratz, Implementing integrated rural tourism: An event-based approach, Tour. Manag., 32 (2011), 1352–1363. https://doi.org/10.1016/j.tourman.2011.01.009 doi: 10.1016/j.tourman.2011.01.009
    [7] G. H. Liu, Z. F. Liu, H. F. Hu, G. Wu, L. Dai, The impact of tourism on agriculture in Lugu Lake region, Int. J. Sustain. Dev. World Ecol., 15 (2008), 3–9. https://doi.org/10.1080/13504500809469762 doi: 10.1080/13504500809469762
    [8] E. Di-Clemente, J. M. Hernandez-Mogollon, T. Lopez-Guzman, Culinary tourism as an effective strategy for a profitable cooperation between agriculture and tourism, Soc. Sci-Basel, 9 (2020), 15. https://doi.org/10.3390/socsci9030025
    [9] A. A. Alola, U. V. Alola, Agricultural land usage and tourism impact on renewable energy consumption among coastline mediterranean countries, Energy Environ., 29 (2018), 1438–1454. https://doi.org/10.1177/0958305x18779577 doi: 10.1177/0958305x18779577
    [10] X. T. Chi, H. Han, Emerging rural tourism in China's current tourism industry and tourist behaviors: The case of Anji County, J. Travel Tour. Mark., 38 (2021), 58–74. https://doi.org/10.1080/10548408.2020.1862026 doi: 10.1080/10548408.2020.1862026
    [11] G. C. M. Laeis, R. A. Scheyvens, C. Morris, Cuisine: A new concept for analysing tourism-agriculture linkages?, J. Tour. Cult. Chang., 18 (2020), 643–658. https://doi.org/10.1080/14766825.2019.1624763 doi: 10.1080/14766825.2019.1624763
    [12] J. Kim, S. Kim, C. Ju, H. Son, Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications, IEEE Access, 7 (2019), 105100–105115. https://doi.org/10.1109/access.2019.2932119
    [13] J. S. Zhu, A. Siriphon, D. Airey, J. Mei-lan-Anatolia, Chinese tourism diplomacy: A Chinese-style modernity review, Anatolia, 33 (2022), 550–563. https://doi.org/1080/13032917.2021.1978515
    [14] L. Sun. S. Jing, L. Moucheng, M. Qingwen, Agricultural production under rural tourism on the Qinghai-Tibet plateau: From the perspective of smallholder farmers, Land Use Policy, 103 (2021), 1053–1063. https://doi.org/10.1016/j.landusepol.2021.105329 doi: 10.1016/j.landusepol.2021.105329
    [15] P. Y. Chen, X. Kong, Tourism-led commodification of place and rural transformation development: A case study of Xixinan village, Huangshan, China, Land, 10 (2021), 156–167. https://doi.org/10.3390/land10070694
    [16] Z. S. Yang, J. M. Cai, R. Sliuzas, Agro-tourism enterprises as a form of multi-functional urban agriculture for peri-urban development in China, Habitat Int., 34 (2010), 374–385. https://doi.org/10.1016/j.habitatint.2009.11.002 doi: 10.1016/j.habitatint.2009.11.002
    [17] Y. Liu, W. Zhang, Z. Zhang, Q. Xu, W. Li, Risk factor detection and landslide susceptibility mapping using geo-detector and random forest models: The 2018 Hokkaido eastern Iburi earthquake, Remote Sens., 13 (2021). https://doi.org/17.10.3390/rs13061157
    [18] Z. X. Zhou, M. T. Li, Spatial-temporal change in urban agricultural land use efficiency from the perspective of agricultural multi-functionality: A case study of the Xi'an metropolitan zone, J. Geogr. Sci., 27 (2017), 1499–1520. https://doi.org/10.1007/s11442-017-1449-6 doi: 10.1007/s11442-017-1449-6
    [19] J. Pueyo-Ros, The role of tourism in the ecosystem services framework, Land, 7 (2018), 13. https://doi.org/10.3390/land7030111
    [20] L. Scherer, S. Pfister, Modelling spatially explicit impacts from phosphorus emissions in agriculture, Int. J. Life Cycle Assess, 20 (2015), 785–795. https://doi.org/10.1007/s11367-015-0880-0 doi: 10.1007/s11367-015-0880-0
    [21] J. J. Wang, F. M. Zhou, A. L. Xie, J. Shi, Impacts of the integral development of agriculture and tourism on agricultural eco-efficiency: A case study of two river basins in China, Environ. Dev. Sustain., 34 (2022), 1–30. https://doi.org/10.1007/s10668-022-02781-x doi: 10.1007/s10668-022-02781-x
    [22] D. Light, S. Richards, P. Lvanova, Exploring "gothic tourism": A new form of urban tourism?, Int. J. Tour. Cities, 7 (2021), 224–236. https://doi.org/10.1108/ijtc-01-2020-0012 doi: 10.1108/ijtc-01-2020-0012
    [23] Y. Li, Q. Cui, Analyzing the role of competition and cooperation in airline environmental efficiency through two dynamic environmental cross-efficiency models, Int. J. Sustain. Transp., 15 (2021), 850–864. https://doi.org/10.1080/15568318.2020.1821415 doi: 10.1080/15568318.2020.1821415
    [24] C. N. Wang, H. P. Nguyen, C. W. Chang, Environmental efficiency evaluation in the top Asian economies: An application of DEA, Mathematics, 9 (2021), 19. https://doi.org/10.3390/math9080889 doi: 10.3390/math9080889
    [25] D. Liu, Q. X. Chen, A regret cross-efficiency ranking method considering consensus consistency, Expert. Syst. Appl., 208 (2022), 16. https://doi.org/10.1016/j.eswa.2022.118192 doi: 10.1016/j.eswa.2022.118192
    [26] M. Akram, S. M. U. Shah, M. M. A. Al-Shamiri, Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets, AIMS Math., 8 (2023), 924–961. https://doi.org/10.3934/math.2023045
    [27] M. Akbar, A. Alireza, K. Sohrab, M. Vaez-Ghasemi, Closest reference point on the strong efficient frontier in data envelopment analysis, AIMS Math., 5 (2020), 811–827. https://doi.org/10.3934/math.2020055
    [28] F. Yang, C. C. Yang, L. A. Liang, S. Du, New approach to determine common weights in DEA efficiency evaluation model, J. Syst. Eng. Electron., 21 (2010), 609–615. https://doi.org/10.3969/j.issn.1004-4132.2010.04.013 doi: 10.3969/j.issn.1004-4132.2010.04.013
    [29] Y. Huang, Y. M. Wang, J. Lin, Two-stage fuzzy cross-efficiency aggregation model using fuzzy information retrieval method, Int. J. Fuzzy Syst., 21 (2019), 2650–2666. https://doi.org/10.1007/s40815-019-00733-8 doi: 10.1007/s40815-019-00733-8
    [30] Y. Huang, Y. M. Wang, Pareto approach for DEA cross efficiency evaluation based on interval programming, J. Intell. Fuzzy Syst., 33 (2017), 2375–2389. https://doi.org/10.3233/jifs-17514 doi: 10.3233/jifs-17514
    [31] F. Najafzade, S. Khoshfetrat, S. Saeidi, A cross-efficiency model using bargaining theory in a two-stage network DEA, Comput. Appl. Math., 41 (2022), 23. https://doi.org/10.1007/s40314-022-02027-6 doi: 10.1007/s40314-022-02027-6
    [32] L. Chen, Y. M. Wang, Data envelopment analysis cross-efficiency model in fuzzy environments, J. Intell. Fuzzy Syst., 30 (2016), 2601–2609. https://doi.org/10.3233/ifs-151878 doi: 10.3233/ifs-151878
    [33] X. Shi, Environmental efficiency evaluation of Chinese industry systems by using non-cooperative two-stage DEA model, Math. Probl. Eng., 2019 (2019), https://doi.org/10.10.1155/2019/9208367 doi: 10.10.1155/2019/9208367
    [34] L. Angulo-Meza, M. Gonzalez-Araya, A. Iriarte, R. Rebolledo-Leiva, J. Carlos Soares de Mello, A multiobjective DEA model to assess the eco-efficiency of agricultural practices within the CF plus DEA method, Comput. Electron. Agric., 161 (2019), 151–161. https://doi.org/10.1016/j.compag.2018.05.037
    [35] L. Wen, H. P. Li, Estimation of agricultural energy efficiency in five provinces: Based on data envelopment analysis and malmquist index model, Energy Sources. Part A-Recovery Util. Environ. Eff., 44 (2022), 2900–2913. https://doi.org/10.1080/15567036.2019.1651798 doi: 10.1080/15567036.2019.1651798
    [36] L. Liang, J. Wu, W. D. Cook, J. Zhu, Alternative secondary goals in DEA cross-efficiency evaluation, Int. J. Prod. Econ., 113 (2008), 1025–1030. https://doi.org/10.1016/j.ijpe.2007.12.006 doi: 10.1016/j.ijpe.2007.12.006
    [37] Y. M. Wang, K. S. Chin, S. Wang, DEA models for minimizing weight disparity in cross-efficiency evaluation, J. Oper. Res. Soc., 63 (2012), 1079–1088. https://doi.org/10.1057/jors.2011.116 doi: 10.1057/jors.2011.116
    [38] L. Li, W. Dai, J. Chu, Y. Wang, DEA altruism and exclusiveness cross-efficiency evaluation models, Sci. Iran., 27 (2020), 2499–2513. https://doi.org/10.24200/sci.2020.21994 doi: 10.24200/sci.2020.21994
    [39] G. L. Yang, J. B. Yang, W. B. Liu, X. Li, Cross-efficiency aggregation in DEA models using the evidential-reasoning approach, Eur. J. Oper. Res., 231 (2013), 393–404. https://doi.org/10.1016/j.ejor.2013.05.017 doi: 10.1016/j.ejor.2013.05.017
    [40] Q. Wang, K. K. Wei, Y. Zhang, Comprehensive cross-efficiency methods with common weight restrictions in data envelopment analysis, Asia Pac. J. Oper. Res., 37 (2020), 21. https://doi.org/10.1142/s0217595920500190 doi: 10.1142/s0217595920500190
    [41] C. M. Rogerson, Tourism-agriculture linkages in rural South Africa: Evidence from the accommodation sector, J. Sustain. Tour., 20 (2012), 477–495. https://doi.org/10.1080/09669582.2011.617825 doi: 10.1080/09669582.2011.617825
    [42] Y. Z. Song, J. F. Wang, Y. Ge, C. Xu, An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data, GISci. Remote Sens., 57 (2020), 593–610. https://doi.org/10.1080/15481603.2020.1760434 doi: 10.1080/15481603.2020.1760434
    [43] G. Guo, K. Li, D. Zhang, M. Lei, Quantitative source apportionment and associated driving factor identification for soil potential toxicity elements via combining receptor models, SOM, and geo-detector method, Sci. Total Environ., 830 (2022), 12. https://doi.org/10.1016/j.scitotenv.2022.154721
    [44] H. H. Orkcu, V. S. Ozsoy, M. Orkcu, H. Bal, A neutral cross efficiency approach for basic two stage production systems, Expert. Syst. Appl., 125 (2019), 333–344. https://doi.org/10.1016/j.eswa.2019.01.067 doi: 10.1016/j.eswa.2019.01.067
    [45] M. C. Zewdie, M. Moretti, D. B. Tenessa, Z. A. Ayele, J. Nyssen, E. A. Tsegaye, et al., Agricultural technical efficiency of smallholder farmers in ethiopia: A stochastic frontier approach, Land, 10 (2021), 246. https://doi.org/10.3390/land10030246
    [46] G. Cheng, J. W. Han, P. C. Zhou, L. Guo, Multi-class geospatial object detection and geographic image classification based on collection of part detectors, ISPRS J. Photogramm. Remote. Sens., 98 (2014), 119–132. https://doi.org/1016/j.isprsjprs.2014.10.002 doi: 1016/j.isprsjprs.2014.10.002
    [47] X. Xu, J. Li, D. Wu, X. Zhang, The intellectual capital efficiency and corporate sustainable growth nexus: Comparison from agriculture, tourism and renewable energy sector, Environ. Dev. Sustain., 23 (2021), 16038–16056. https://doi.org/10.1007/s10668-021-01319-x
    [48] E. Slabbert, E. Du Plessis, O. Digun-Aweto, Impacts of tourism in predicting residents' opinions and interest in tourism activities, J. Tour. Cult. Chang., 19 (2021), 819–837. https://doi.org/10.1080/14766825.2020.1803891
    [49] X. Yang, L. Shu, J. N. Chen, M. A. Ferrag, J. Wu, E. Nurellari, et al., A survey on smart agriculture: development modes, technologies, and security and privacy challenges, IIEEE-CAA J. Automatica Sin., 8 (2021), 273–302. https://doi.org/10.1109/jas.2020.1003536
    [50] Y. Zhu, C. J. Huo, The impact of agricultural production efficiency on agricultural carbon emissions in China, Energies, 15 (2022), 22. Math-9075-english.pdf
    [51] B. K. T. Edjah, J. P. Wu, J. J. Tian, Research on the comparative advantage and complementarity of China-Ghana agricultural product trade, Sustainability, 14 (2022), 14. https://doi.org/10.3390/su142013136 doi: 10.3390/su142013136
    [52] Y. Cui, Y. Han, N. Lv, H. Zhu, Characteristics of local officials and high quality development of chinese agriculture-evidence from chinese governors andsecretaries of the provincial party committee, Appl. Math. Nonlinear. Sci., 5 (2020), 543–556. https://doi.org/10.2478/amns.2020.2.00019 doi: 10.2478/amns.2020.2.00019
    [53] M. Wysokinski, J. Domagala, A. Gromada, M. Golonko, P. Trębska, Economic and energy efficiency of agriculture, Agric. Econ., 66 (2020), 355–364. https://doi.org/10.17221/170/2020-agricecon doi: 10.17221/170/2020-agricecon
    [54] W. T. Pan, M. E. Zhuang, Y. Y. Zhou, J. J. Yang, Research on sustainable development and efficiency of China's e-agriculture based on a data envelopment analysis-Malmquist model, Technol. Forecast. Soc. Chang., 162 (2021), 6. https://doi.org/10.1016/j.techfore.2020.120298 doi: 10.1016/j.techfore.2020.120298
    [55] B. Duan, C. Arcodia, E. Ma, A. Hsiao, Understanding wine tourism in China using an integrated product-level and experience economy framework, Asia Pac. J. Tour. Res., 23 (2018), 949–960. https://doi.org/10.1080/10941665.2018.1512506 doi: 10.1080/10941665.2018.1512506
    [56] F. B. Shang, W. J. Zhu, Planning of ecological agricultural tourist attractions based on the concept of circular economy, Acta Agric. Scand. Sect. B-Soil. Plant Sci., 72 (2022), 538–552. https://doi.org/10.1080/09064710.2021.2021278 doi: 10.1080/09064710.2021.2021278
    [57] S. H. Liu, B. Gao, Econometric analysis of leisure agriculture and rural tourism scenery based on spatial data analysis, Comput. Intell. Neurosci., 2022 (2022), 8. https://doi.org/10.1155/2022/2286803 doi: 10.1155/2022/2286803
    [58] X. Gong, W. C. Zhu, S. Liu, The strategy of eco-agriculture economic development along the coast based on improving the rural eco-tourism environment, J. Coast Res., (2020), 652–655. https://doi.org/10.2112/jcr-si104-112.1
    [59] S. Corak, S. B. Zivoder, Z. Marusic, Opportunities for tourism recovery and development during and after COVID-19: Views of tourism scholars versus tourism practitioners, Tourism, 68 (2020), 434–449. https://doi.org/10.37741/t.68.4.5 doi: 10.37741/t.68.4.5
    [60] F. Higgins-Desbiolles, B. C. Bigby, A. Doering, Socialising tourism after COVID-19: reclaiming tourism as a social force?, J. Tour. Futures, 8 (2022), 208–219. https://doi.org/10.1108/jtf-03-2021-0058 doi: 10.1108/jtf-03-2021-0058
    [61] J. H. Jung, M. Maeda, A. J. Chang, M. Bhandari, A. Ashapure, J. Landivar-Bowles, The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems, Curr. Opin. Biotechnol., 70 (2021), 15–22. https://doi.org/10.1016/j.copbio.2020.09.003
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1152) PDF downloads(83) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog