Research article Special Issues

On a conjecture for the difference equation $ x_{n+1} = 1+p\frac{x_{n-m}}{x_n^2} $

  • Received: 27 April 2023 Revised: 29 June 2023 Accepted: 07 July 2023 Published: 17 July 2023
  • MSC : 39A10, 39A23, 39A30

  • In [24], E. Tasdemir, et al. proved that the positive equilibrium of the nonlinear discrete equation $ x_{n+1} = 1+p\frac{x_{n-m}}{x_n^2} $ is globally asymptotically stable for $ p\in(0, \frac{1}{2}) $, {locally} asymptotically stable for $ p\in(\frac{1}{2}, \frac{3}{4}) $ and it was { conjectured} that for any $ p $ in the open interval $ (\frac{1}{2}, \frac{3}{4}) $ the equilibrium is { globally} asymptotically stable. In this paper, we prove that this conjecture is true for the closed interval $ [\frac{1}{2}, \frac{3}{4}]. $ In addition, it is shown that for $ p\in(\frac{3}{4}, 1) $ the behaviour of the solutions depend on the delay $ m. $ Indeed, here we show that in case $ m = 1 $, there is an unstable equilibrium and an asymptotically stable 2-periodic solution. But, in case $ m = 2 $, there is an asymptotically stable equilibrium. These results are obtained by using linearisation, a method lying on the well known Perron's stability theorem ([17], p. 18). Finally, a conjecture is posed about the behaviour of the solutions for $ m > 2 $ and $ p\in(\frac{3}{4}, 1) $.

    Citation: George L. Karakostas. On a conjecture for the difference equation $ x_{n+1} = 1+p\frac{x_{n-m}}{x_n^2} $[J]. AIMS Mathematics, 2023, 8(10): 22714-22729. doi: 10.3934/math.20231156

    Related Papers:

  • In [24], E. Tasdemir, et al. proved that the positive equilibrium of the nonlinear discrete equation $ x_{n+1} = 1+p\frac{x_{n-m}}{x_n^2} $ is globally asymptotically stable for $ p\in(0, \frac{1}{2}) $, {locally} asymptotically stable for $ p\in(\frac{1}{2}, \frac{3}{4}) $ and it was { conjectured} that for any $ p $ in the open interval $ (\frac{1}{2}, \frac{3}{4}) $ the equilibrium is { globally} asymptotically stable. In this paper, we prove that this conjecture is true for the closed interval $ [\frac{1}{2}, \frac{3}{4}]. $ In addition, it is shown that for $ p\in(\frac{3}{4}, 1) $ the behaviour of the solutions depend on the delay $ m. $ Indeed, here we show that in case $ m = 1 $, there is an unstable equilibrium and an asymptotically stable 2-periodic solution. But, in case $ m = 2 $, there is an asymptotically stable equilibrium. These results are obtained by using linearisation, a method lying on the well known Perron's stability theorem ([17], p. 18). Finally, a conjecture is posed about the behaviour of the solutions for $ m > 2 $ and $ p\in(\frac{3}{4}, 1) $.



    加载中


    [1] R. M. Abu-Saris, R. DeVault, Global stability of $y_{n+1} = A+y_n/{y_{n-k}}$, Appl. Math. Lett., 16 (2003), 173–178. https://doi.org/10.1016/S0893-9659(03)80028-9 doi: 10.1016/S0893-9659(03)80028-9
    [2] R. Akerkar, Nonlinear functional analysis, Narosa Publishing House, New Delhi, 1999.
    [3] A. M. Amleh, E. A. Grove, G. Ladas, D. A. Georgiou, On the recursive sequence $x_{n+1} = \alpha+{x_{n-1}}/x_n, $ J. Math. Anal. and Appl., 233 (1999), 790–798. https://doi.org/10.1006/jmaa.1999.6346 doi: 10.1006/jmaa.1999.6346
    [4] K. S. Berenhaut, S. Stević, A note on positive non-oscillatory solutions of the difference equation, $x_{n+1} = \alpha+x_{n-k}^p/x_n^p$, J. Differ. Equ. Appl., 12 (2006), 495–499. https://doi.org/10.1080/10236190500539543 doi: 10.1080/10236190500539543
    [5] E. Camouzis, R. Devault, Asymptotic behaviour of solutions of $x_{n+1} = p+{x_{n-1}}/x_n$, Proceedings of the 6th International Conference on Difference Equations, Augsburg, Germany, 2001,375–386.
    [6] P. Cull, M. Flahive, R. Robson, Difference equations, from rabbits to chaos, New York: Springer, 2005. https://doi.org/10.1007/0-387-27645-9
    [7] H. M. El-Owaidy, A. M. Ahmed, M. S. Mousa, On asymptotic behaviour of the difference equation $x_{n+1} = \alpha+x_{n-k}^p/x_n^p$, J. Appl. Math. Comput., 12 (2003), 31–37.
    [8] H. El-Metwally, E. A. Grove, G. Ladas, R. Levins, M. Radin, On the difference equation $x_{n+1} = \alpha+\beta x_{n-1}e^{-x_n}$, Nonlinear Anal., 47 (2001), 4623–4634.
    [9] N. Fotiades, G. Papaschinopoulos, Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form, Appl. Math. Comput., 218 (2012), 11648–11653. https://doi.org/10.1016/j.amc.2012.05.047 doi: 10.1016/j.amc.2012.05.047
    [10] E. A. Grove, G. Ladas, Periodicity in nonlinear difference equations, Advances in Discrete Discrete Mathematics and Applications, Chapman and Hall/CRC, 2004.
    [11] A. E. Hamza, A. Morsy, On the recursive sequence $x_{n+1} = \alpha+{x_{n-1}}/{x_n^k}$, Appl. Math. Lett., 22 (2009), 91–95. https://doi.org/10.1016/j.aml.2008.02.010 doi: 10.1016/j.aml.2008.02.010
    [12] W. S. He, W. T. Li, X. X. Yan, Global attractivity of the difference equation $x_{n+1} = p+{x_{n-k}}/x_n$, Appl. Math. Appl., 151 (2004), 879–885. https://doi.org/10.1016/S0096-3003(03)00528-9 doi: 10.1016/S0096-3003(03)00528-9
    [13] G. L. Karakostas, Asymptotic 2-periodic difference equations with diagonally self-invertible responses, J. Differ. Equ. Appl., 6 (2000), 329–335. https://doi.org/10.1080/10236190008808232 doi: 10.1080/10236190008808232
    [14] G. L. Karakostas, S. Stević, On the recursive sequence $x_{n+1} = \alpha+\frac{x_{n-k}}{f(x_n, \cdots, x_{n-k+1})}$, Demonstr. Math., 38 (2005), 595–610. https://doi.org/10.1515/dema-2005-0309 doi: 10.1515/dema-2005-0309
    [15] G. L. Karakostas, S. Stević, On the recursive sequence $x_{n+1} = \alpha+\frac{x_{n-k}}{\alpha_0x_n+ \cdots+\alpha_{k-1}x_{n-k+1}+\gamma}$, J. Differ. Equ. Appl., 10 (2004), 809–815. https://doi.org/10.1080/10236190410001659732 doi: 10.1080/10236190410001659732
    [16] M. R. S. Kulenović, G. Ladas, Dynamics of second order rational difference equations, Chapman and Hall/CRC, Boca Raton, Fla, USA, 2002.
    [17] J. P. LaSalle, The stability of dynamical systems, Society for Industrial and Applied Mathematics, 1976.
    [18] S. Stević, On the recursive sequence $x_{n+1} = \alpha+x_{n-1}/x_n, $ Dyn. Contin., Discrete Impuls. Syst. Ser. A, 10 (2003), 911–916.
    [19] S. Stević, On the difference equation $x_{n+1} = \alpha+x_{n-1}/x_n, $ Comput. Math. Appl., 56 (2008), 1159–1171. https://doi.org/10.1016/j.camwa.2008.02.017 doi: 10.1016/j.camwa.2008.02.017
    [20] S. Stević, On the recursive sequence $x_{n+1} = \alpha+x^p_{n-1}/x^p_n$, J. Appl. Math. Comput., 18 (2005), 229–234.
    [21] S. Stević, Asymptotics of some classes of higher-order difference equations, Discrete Dyn. Nat. Soc., 2007 (2007), 1–20. https://doi.org/10.1155/2007/56813 doi: 10.1155/2007/56813
    [22] S. Stević, On the recursive sequence $x_{n+1} = A+x^p_{n-1}/x^p_n$, Discrete Dyn. Nat. Soc., 2007 (2007), 1–9. https://doi.org/10.1155/2007/34517 doi: 10.1155/2007/34517
    [23] S. Stević, On the recursive sequence $x_{n+1} = \alpha+x^p_{n}/x^r_{n-1}$, Discrete Dyn. Nat. Soc., 2007 (2007), 1–9. https://doi.org/10.1155/2007/40963 doi: 10.1155/2007/40963
    [24] E. Tasdemir, M. Göcen, Y. Soykan, Global dynamical behaviours and periodicity of a certain quadratic-rational difference equation with delay, Milkolc Math. Notes, 23 (2022), 471–484.
    [25] I. Yalcinkaya, On the difference equation $x_{n+1} = a+{x_{n-1}}/{x_n^k}$, Discrete Dyn. Nat. Soc., 2008 (2008), 1–8. https://doi.org/10.1155/2008/805460 doi: 10.1155/2008/805460
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(908) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog