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Abstract: In [24], E. Tasdemir, et al. proved that the positive equilibrium of the nonlinear discrete
equation x,,; = 1 + pxx—; is globally asymptotically stable for p € (0, %), locally asymptotically stable
for p € (%, %) and it V\;as conjectured that for any p in the open interval (%, %) the equilibrium 1is
globally asymptotically stable. In this paper, we prove that this conjecture is true for the closed interval
[%, ;31]. In addition, it is shown that for p € (%, 1) the behaviour of the solutions depend on the delay m.
Indeed, here we show that in case m = 1, there is an unstable equilibrium and an asymptotically stable
2-periodic solution. But, in case m = 2, there is an asymptotically stable equilibrium. These results are
obtained by using linearisation, a method lying on the well known Perron’s stability theorem ( [17], p.
18). Finally, a conjecture is posed about the behaviour of the solutions for m > 2 and p € (%, 1).
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1. Introduction

In their book [16], Kulenovi¢ and Ladas initiated a systematic study of the difference equation

o+ Bx, + yx,
A+ Bx, + Cx,_;’

=0,1,2, -

Xn+1

for nonnegative real numbers «, 58,7y, A, B, C such that B+ C > 0 and @+ +7y > 0, and for nonnegative
or positive initial conditions x_;, xo. The periodicity of the solutions of this equation was discussed by
Grove and Ladas in [10]. By settinga = A = C = 0, we get

X1 = o+ % : (1.1)
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an equation studied in several works, for instance, in Amleh et al. [3], Camouzis and Devault [5],
Wan-Sheng He et al. [12], which is a special case of
Xn—k
Xpe1 = p + .

n

The behaviour of the solutions of this equation as well as of the more general equation

S
n—m

-
Xn

Xpsl = @ +

was studied in a great number of papers especially by Stevié (see, e.g. [18-22] and the references
therein), as well as by Berenhaut and Stevi¢ [4] and El-Owaidy [7] and it differs completely from the
behaviour of equation

Vo

-
ynfk

studied e.g. by Stevi¢ [23] in the general case for p,r, but for k = 1 and by Abu-Saris and Devault
in [1] when p = r = 1 and k is any positive integer. A more general version of Eq (1.1) is

Yn+1 =A+

Xn—k

a + s
f(-xna T Xn_k+1)

investigated in [14, 15]. A basic condition in this situation is that the denominator f does not vanish at
(0,0,---,0) and so it includes the specific case

Xn+l =

Xpi1 = @ + Bx,_1e "

investigated by e.g., El-Metwally et al. [8], Fotiades and Papaschinopoulos [9]. On the other hand,
in [11] Hamza and Morsy studied the discrete equation

Xn—-1

Xpe1 = A+

k
x’l

where A > 0 and k € N. See, also, Yalcinkaya [25].
One of the results of the present work is that for all p in the closed interval [

equilibrium y = %(1 + /1 + 4p) of the discrete equation

1 3

3+ 71, the unique positive

xn—m

E,: x=1+p (1.2)

2
Xn

is globally asymptotically stable, for all values m = 1,2,---. Thus, we give a positive answer to a

conjecture posed in a recent paper by Tasdemir, Gocen and Soykan, see [24]. In that work, it is shown
that, if m > 1, then for 0 < p < %, the equilibrium point is locally asymptotically stable, while, if

0<p< % the equilibrium is globally asymptotically stable. Also, by using numerical simulations, it
was conjectured that for p in the semi-closed interval [%, %) the equilibrium y is globally asymptotically
stable. Here, we show that generally this conjecture is true and we have global stability for all p in the
closed interval [%, 43‘1]~ Notice that for p € (0, 1) all solutions of Eq (1.2) with positive initial values are
bounded uniformly with initial values in bounded sets and stay greater than 1.
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The results about stability for p € (0, %) are independent of the delay m. This is not true for the
values of p in the interval (%, 1). In this paper, we present two more results when p belongs to this
interval and m = 1, or m = 2. In the first case, we show that there exist a locally asymptotically stable
2-periodic solution and an unstable equilibrium point. An explicit example is also presented. For
m = 2, we show that there is a unique equilibrium which is locally asymptotically stable. These results
are shown by using the method by linearisation. Finally, we suggest that for the general value of the
delay m the behaviour of the solutions do not change, and, if m is an odd positive integer, then they are
as in case m = 1, while if m is even, they are as in case m = 2.

2. Thecase ; < p <

Al

1
2

As we said previously, for the values of p in the interval (0, %) the global asymptotic stability of
the equilibrium is proved in [24]. Now, first, we assume that p € [%, %]. In this section we show the
following result:

Theorem 2.1. The equilibrium point y = %(1 + 1 +4p) of Eq (1.2) is unique and it is globally
asymptotically stable if % <p< %.
Proof. Let (x,) be a solution with positive initial values. Then, we have x, > 1, for all » and moreover

2 2 2
X1 <1+ pxy <1 +p+px0m1 <1+p+p +~--+pkxn_km_(k_1)s1+p+p +-~~+pkB,

where B := max{x; : i = -m,—m+1,---,0} and k is the integer part of the number 1 + —"=. This
integer is such that

>k >

1+

1+m 1+m
Thus we obtain —m < n — km — (k — 1) < 0. Hence, we have

1
=1,
These facts guarantee that any solution with positive initial values is bounded uniformly with initial
values in bounded sets and all its terms stay greater than 1.

Now consider any solution with positive initial values. According to [13], there are full limiting
sequences S, and I, satisfying Eq (1.2) for all n € Z and such that § := Sy = limsupx, and I := [, =
lim inf x,,. This implies that

+ B.

X, <l+p+p*+---+B

S=1+p§_2mﬁl+pﬁ 2.1)
and
L. I

n

Notice that p < 1 <1 < S. From (2.1) and (2.2) we obtain
1 S
S+p=<SI<I+p—.
pS N B pI

Thus
S2-r?

S-I<p T
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which implies the following cases:
1) I = S, which case proves the result, and

2)I < S and
1 1 1
1<p(=+—=)<2p-.
< p( 7 S) Py
It is clear that if p = %, then I < 1, which is impossible. Thus, the second case occurs only when

pE (%, %]. So, consider the second case and we shall arrive to a contradiction. Then, we have 1 < I <

2p =: ay.
Assume that p < 3. From (2.2) we have

al(l—% :2p(1—%)>1(1—%)21,

pa  _

andso § > il = b;. It is easy to see that b; > 1. From (2.2) we get

bl(l—%)<S(1—%)s1

pb
1 =:a,.
“Np o1 @

Now, if a; < 1, it must be true that / = 1. Then, from (2.2) we get 1 > 1 + p#, which is a
contradiction. Thus, a, > 1 and, since p > 5, we can easily see, that the inequality a; > a, holds.

Again, from (2.1), we obtain

and therefore

1
2’

s> |22 =ip,
a2—1

It is obvious that b; < b,. We continue in this way and obtain two sequences (a,) and (b,) such that
for all indices n.

I<a,b,<S and
pb, pay
n+l = ’ bn: ,
1 by — 1 Va, -1
3

Since p < 7 we have by > a;. Hence, by > a, and so by > a,. It follows that b, > a,, for all
n=1,2,--- and moreover the sequence (a,) is decreasing and (b,) is increasing. Since these sequences

are bounded, they converge to some positive reals L; and Lg respectively, such that L; < Lg. Therefore,

we have
L L
L,z,/p—sandLS: p1’
Lg—1 L;—1

L, Lg
Li=1+p—, Ls=1+p— (2.3)
L L}

from which the relations

follow. From these relations we obtain
LsL7 + pL} = L5317 = L;L; + pL;.
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So
L;Ls = p(L; + Lyg).

Also, we have
LiL— LsL; = L — L7 — p(Ls — Ly).

Thus
LslL;=Ls+ L, - p.

Hence,
2

P and L Lg = P
l-p l-p

Therefore the quantities L; and Ly are the roots of the quadratic equation

L;+Lg =

2
2-L P (2.4)
Il-p 1-p

If p < 3, this equation does not have real roots, which implies that in this case Eq (2.4) does not exist.
So we must have [ = S.

Ifp= %, then, this equation has equal roots. Thus, L; = Lg, which is impossible. The proof of the
theorem is complete.

3. Thecase2 <p<1

In this section we shall discuss the asymptotic behaviour of the solutions of Eq (1.2) when % <p<
1. For our purpose we need to rewrite the equation in a system form. By the use of this form we can
extract some results about the existence of periodic solutions of the equation.

Let (x,) be a solution with positive initial values. To simplify the writings we consider the function

u
pu,v):=1+p—, u,v>0.
v
In the (m + 1)-vector space, define the sequence of vectors

)’(])n = x(m+1)n+j—1, ,]: 1727”' am+ 1’ n= 1’23”'

and observe that it satisfies the system of equations

YDuer = ¢, y(m + 1)), (3.1
Yhnet = PO, YD) = (2, p(D, y(m + 1)), (3.2)
Yt = ¢, Ynt1) = ¢(Y3)ns (2> pY(Dy y(m + 1)), (3.3)
ym+ Dpr = ¢((m + 1y, py(m)p, - - - (1, y(m + 1)n))). (3.4)

This system can be written in the simple vectorial form

Yoo = H(Yn), (35)
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where Y, is the (m + 1)-vector (y(1),, y(2),,- -+ ,y(m + 1),)! and H is the vector valued function with
coordinates the right parts of system (3.1)—(3.4).

From here we can show that Eq (1.2) has a (m + 1)-periodic solution. To do that it is enough to
prove that Eq (3.5) admits at least one constant solution. In the (m + 1)-dimensional space R" define
the fixed point problem

X=FX), Xel:=[0,1]""

where X = (ri, 12, Fy1)’ s
F(X) := (0(r+1),6(r1), - -+, 0(ry)

and
o(r) := 1 - pr’.

It is clear that the continuous function F maps the compact connected set / into the set [1—p, 11"+ C I,
and therefore, due to the well known Brouwer’s fixed point theorem (see, e.g. [2], p. 63), it has a (not
necessarily unique) fixed point Q := (g1, g2, " -  ms1)’ » which, obviously, belongs to the set [1—p, 1)"*!,
The vector equation Q = F(Q) can be written in the form

q;=0q;-1), j=12,---.m+1, (3.6)

with gy = g+1. Solving this system with respect to any of the coordinates of Q, we see that each of
them satisfies the equation
S() := 6"V =1, (3.7)

We set C := (¢q,¢2,°** , Cs1), Where
Cj = l/qJ', j: 1,2,"' ,m+l

and observe that its coordinates are greater than 1 and they satisfy the algebraic system

C.
J .
ci=l+p—=—, j=12,--- ,m+1,
c:
j-1
where we have set ¢y = ¢,,+1. [tis clear that the sequence ¢y, ¢, - - , Cpus1, €1, C2, -+ - 18 @ (m+ 1)-periodic

solution of the original equation.

The vector C is not necessarily unique and its coordinates might be equal. The latter means that the
number m + 1 is not necessarily the least period of C. Notice that, as we shall see later, form = 1, Cis a
vector of the form (a, a)!, namely, an equilibrium of the equation, or a 2-periodic solution a, b, a, b, - - -
with a # b. But, for m = 2, C is a vector of the form (a, a, a)”, with a > 1 and it is unique.

To proceed to our discussion we need to refer to the following result, which is implied from the
classical result due to Perron ( [17], p. 18):

Theorem 3.1. ( [6], p. 311) If T is an n-dimensional differentiable function with fixed point X and J
is the Jacobian matrix of T evaluated at X, then X is a locally stable fixed point if all eigenvalues of J
have absolute value less than 1. If at least one of these absolute values is strictly greater than 1, the
fixed point is unstable.

In the sequel we shall discuss the cases m = 0,m = 1,m = 2 and, finally, we shall give some
remarks for the general case.

AIMS Mathematics Volume 8, Issue 10, 22714-22729.



22720

3.1. The case E

It is obvious that in case m = 0, Eq (1.2) becomes x,,; = 1 + xﬁn, which has the equilibrium
= 1(1 + /1 +4p) as a global attractor.

3.2. The case E,

Here we discuss the behaviour of the solutions of the discrete equation (1.2) in case m = 1 and
pE (%, 1) and we prove the following result:

Theorem 3.2. Assume that m = 1. Then, the system of equations
@ B
a:1+pl§, ﬁ:1+pg, (3.8)

has solutions the pair of numbers

1
a=51—<1+d4p 3), ﬁ———(l—@)

and the constant number i
Y= 5(1 + 1 +4p).

The pair (a, 8) produces the sequence a,,a,B,- - , which is a two-periodic solution of Eq (1.2) and
it is asymptotically stable. The fixed point vy is an unstable point.

Proof. In this case the constant solution of Eq (3.5) is the vector (c(1), c(2))”, where ¢(1) = a and
c(2) = B. Then, these numbers satisfy relations (2.3) and so they solve Eq (2.4). Thus, they are equal
to the suggested values @ = 2 : p(l + y4p—3)and B = 2 : p(l — +4p —3). If @ = B, then we have the
equation @ = 1 + pa, whose the positive solution is equal to c.

Let (x,) be a solution of Eq (1.2) with positive initial values. We set y(1),, := x,, and y(2),, := X2,41.
These sequences satisfy the system

y(l)n+l = ¢(y(1)my(2)n)a )’(2)n+1 = ¢(y(2)n7 ¢(y(1)n’y(2)n)

Obviously this system has the equilibrium (e, 8), whose the coordinates are the two roots of Eq (2.4),
as well as the number k. Since p > % we can easily see that 1 < 8 < @ and

P <a< 4

2(1-p) 1-p

Notice that the numbers a, b, which are greater than 1 and satisfy the polynomial equation

x4_x3_p(x2_p)2:0

So, by setting x := 1, we see that < and } satisfy the Eq (3.7) for m = 1, namely
6%(1) = 0(6(1)) = O, (3.9)

where 1 € (0, 1).
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Next we set u, := y(1), and v, := y(2), and let z, stand for the vector (u,,v,)". The sequences
(uy), (v,) satisfy the system of relations

Uy (vn)
nl =1+p—=, Vs =1+ ,
et = 2TP Pt = TP + plun) P

(va)?’

which can be written in the form

| Unsr ) _ Gy, V) .
Zuv1 = ( . ) = ( (Vs Bty 7)) ) = K.

where f(u,v) := ¢(u,v) and
8u,v) 1= ¢(v, p(u,v))

are rational functions defined on the open square interval (0, +o0)? and such that f(a,8) = « and
g(a,B) = . Let A be the Jacobian matrix of the operator K:

A= fula,p)  fila,p) _ 1%2 %
: gu@,B) ga,p) 292 pa—d) |-

Ba3 a3

We shall show that the matrix A is stable, or equivalently, its spectral radius is less than 1. To prove
it, first, we observe that

S_a?+ pSa -4
Ay =L ¢ f( a-4)
a

Since the function

y(@) = a’ — a* + p(Sa — 4)
satisfies y(1) = p > 0 and
y' (@) =3a* - 2a +5p >0,
for all a, (notice that its discriminant is negative), it follows that the quantity #r(A) is positive.

Also, the determinant |A| of the matrix A is equal to

p2

(l’2,32 ’

Al =

which is positive.
Next, we claim that the characteristic values are real numbers. Indeed, the discriminant of the
characteristic equation
A —tr(A)A+ 14| =0

is equal to
1t} (A) — 4]A|.

The fact that this quantity is nonnegative is equivalent to the inequality
[(@*(@ = 1)+ p(Sa — 4)]* — 4pa’(a— 1) > 0.

Since a > 1, the left side of the previous inequality is greater than or equal to [(a?(a — 1) — p(5a —4)]?,
which is nonnegative and so the claim is proved.
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It remains to show that the matrix A is stable. First, we observe that tr(A) < 2. Indeed, we have

@-a’+pBa-4) @ +a*-pB5a-4)

2—tr(A) =2 = 5

a+a-5+4 d—-4a+4 (a-2)
> = = 2

0.

a’ a’ a’

Therefore, the fact that the greater root of the characteristic equation is strictly less than 1 is equivalent
to the inequality

Al — tr(A) + 1 > 0,

or, equivalently, to the inequality
o —4pa+3p>0. (3.10)

Replacing a with its value, this inequality is equivalent to

31
6p’~ —-p+3+ §(4p —3)p2 0.

Obviously, this is true since the left side can be written as

6(p— 307 + 3oy + 4p - 3",
which is positive for p in the open interval (%, 1). Therefore, relation (3.10) is true.
Now, we can apply Theorem 3.1 and the proof is complete as the equilibrium (e, ) is concerned.
Next, we shall check what is going on with the equilibrium y. In this case, we see that all steps of
the previous proof work equally well with y in the place of a and S, except relation (3.10), which, we
shall show, is not satisfied.
Indeed, to see that the inequality

L VT

2

4pl+ 1 +4p

I’ - > +3p>0

is not true, we observe that it is equivalent to
l+4p>@p—-1)41+4p,
or \/1+4p>4p—-1,orp< %, which is not true. This completes the proof of the theorem.

An application

Consider the case p = 0.8 and m = 1. Then we have a = 2.894 and 8 ~ 1.106 approximately. For
the initial values the points xy = x; = 1, the corresponding solution is as in the following matrix:

AIMS Mathematics Volume 8, Issue 10, 22714-22729.
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xo =1 x =1 xy =1.8 x3 = 1.247 x4 = 1.926 x5 = 1.269

xg = 1.957 x7 = 1.265 xg = 1.978 X9 = 1.258 x10 = 1.999 | x;; = 1.251

x12=2.029 | x;3=1236 | x4 =2.062 | x;5=1.232 | x6=2.086 | x;7 =1.226
x18 =2.110 | x19 = 1.220 | x30 =2.134 | xp; = 1.214 | x5 =2.158 | xp3 = 1.206
Xoq = 2187 | x5 = 1.201 | xp6 =2.213 | x27 = 1.196 | xp8 =2.237 | xp9 = 1.191

x30 =2.261 | x3; = 1.186 | x3, =2.285 | x33 =1.181 | x34 =2.310 | x35 =1.177
x36 =2.334 | x37 = 1.172 | x33 =2.359 | x39 = 1.168 | x40 =2.383 | x4; = 1.164
Xqp =2.407 | x43 = 1.160 | x4q =2.431 | x45 = 1.157 | x4 =2.452 | x47 = 1.153
X8 = 2.475 | x40 = 1.150 | x50 =2.497 | x51 = 1.147 | x50 =2.518 | x55 = 1.144
xs4 =2.539 | x55 = 1.141 | x56 =2.560 | x57 = 1.139 | x5 =2.578 | x50 = 1.137
Xe0 =2.595 | x¢1 = 1.135 | x6p =2.611 | xg3 = 1.133 | x¢4 =2.627 | x¢5 = 1.131

Xo6 =2.642 | xg7 = 1.129 | x¢3 = 2.658 | xg9 = 1.127 | x790 =2.674 | x7; = 1.126
X720 =2.687 | x73 =1.124 | x74 =2.701 | x75 = 1.123 | x76 =2.713 | x77 = 1.122
x78 =2.724 | x79 = 1.120 | xg0 =2.737 | xg; = 1.119 | xgp =2.748 | xg3 =1.118
xgq =2.758 | xg5 = 1.117 | x36 =2.768 | xg7 = 1.116 | xg3 =2.777 | xgo = 1.115
Xoo = 2.786 | x91 = 1.114 | x9 =2.795 | x93 = 1.114 | x94 =2.801 | x95 = 1.113
X9 = 2.808 | x97 = 1.112 | x93 =2.816 | x99 = 1.112 | xj90 = 2.821 | x10; = 1.111
X102 = 2.828 | xj03 = L.111 | x104 = 2.832 | x105 = 1.110 | x106 = 2.838 | x107 = 1.110
X108 = 2.842 | x109 = 1.109 | x110 = 2.848 | x111 = 1.109 | x112 = 2.852 | xy13 = 1.109
X114 = 2.855 | x115 = 1.108 | x116 =2.860 | x117 = 1.108 | xy15 = 2.863 | x119 = 1.108
X120 = 2.865 | x121 = 1.107 | x120 = 2.870 | x123 = 1.107 | x124 = 2.873 | x125 = 1.107
X126 = 2.875 | x127 = 1.107 | x128 = 2.876 | x129 = 1.107 | x130 = 2.877 | x131 = 1.106
X132 = 2.881 | x133 = 1.106 | x134 = 2.884 | x135 = 1.106 | x136 = 2.886 | x137 = 1.106
X138 = 2.887 | x139 = 1.106 | x140 = 2.888 | x141 = 1.106 | x140 = 2.889 | x143 = 1.106

Note: The subsequence (x,,) approaches the value @ ~ 2.894 and the subsequence (x,+) approaches the value g8 = 1.106.

3.3. The case E,

In this subsection we discuss the behaviour of the solutions of the discrete equation (1.2) where
m=2and pe(31).
In this case Eq (3.5) is formulated by using three variables u,, v,, w,, and it takes the form

Upi1 = ¢(un’ Wn) Vntl = ¢(vn’ ¢(un’ Wn)), Wpel = ¢(Wn’ ¢(Vn’ ¢(l/tn, Wn)))’

where ¢(u,v) := 1+ p5. A fixed point of this system is a triple a, b, ¢ in the interval (1, +o0) satisfying
the system

(3.11)

a b c
a:1+pc—, b:1+p;, c:1+pl§.
Since a, b, c > 1, we can easily see that all numbers a, b, ¢ are smaller than ﬁ Therefore we have
L abe< (3.12)
——<a,b,c . .
1 - p(1 - p)? 1-p

Expressing b in terms of a and ¢ in terms of b, substitute in the first equation and obtain the algebraic
equation
Q(a) :=a* —a’ - pla* - p(a®* - py’}* = 0.
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22724

By symmetry, it follows that this equation is, also, satisfied by the numbers b and c¢. We shall show that
this algebraic equation admits a unique root in the interval (1, +c0). To this end we put ¢ := i € (0,1
and see that ¢ satisfies Eq (3.7) for m = 2, namely the equation

& (t) = 6(8%(1)) = t. (3.13)

Now we observe that the algebraic equation

/1—z
P(t) = p(1 — pt)* — 1 + — =0,

has a unique root, because the function P vanishes at unique point in the interval (0, 1). Indeed, it holds
that

1 3
PO)=p—-1+—>>-1+1>0, P)=p(l-p*-1<0,
\Vp 4

and P is strictly decreasing on the interval (0, 1), since,

1
P'() = —4p*t(1 — pt*) - ———— < 0.
2ypVI -1t

This is because * < 1 < 1/p.
Therefore the function P admits a unique real root in the interval [f—P 1]. This means that the three

numbers a, b, ¢ are equal, obviously, to %(1 + /1 +4p).
Now, we set

Jf,v,w) == g(u,w), gu,v,w) := ¢(v, p(u, w)), hu,v,w) := p(w, (v, (u, w)))

and let F := (f, g, h)". It is clear that it holds F(a,a,a) = (a,a,a)’. To proceed, we form the Jacobian
matrix A of the vector valued function F at the fixed point (a, a,a)! and obtain

a-1 0 —2(a—1)

2a—17 1 4a1)?

A=| o= =
4(a-1)3 =2a-1  a-1 _ 8(a-1)

a3 a? a a3

Next, we check the applicability of Theorem 3.1. This means that we have to show that the spectral
radius of the matrix A is less than 1.
Indeed, the characteristic equation of A is

B+ B2 -30 P +324-82 - =0, (3.14)

where { denotes the fraction %, whose maximum interval of existence is equal to [%, 3_7‘6] c (0, 1).
Setting A4 = x + iy we split the previous equation into the real part and imaginary part and obtain the
pair of equations
X =3x" + (8 = 30)(x* —y) + 3% x -8 -2 =0, (3.15)

y(3x2 = y* + 2822 = 30)x +35%) = 0. (3.16)
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If y = 0 we have a real eigenvalue A, which is the real root of the first equation when y = 0. Thenit
satisfies
B+ B =301 +32%°4, -8 - =0. (3.17)

Assume that [1;] > 1. Since % € [%, %5], the interval [%, 3_7\5] is divided into two subintervals:

13—«/_ 1 3. 33-45
3 1= [——] (— >

Let{ € [3, 8] Then, we have 3 > 8. Therefore from (3.17), we obtain

(3 I

- ) 5, 3
_|/1|(3§ 8% + 37 o |2+(8§ +§)|/1 |3—3§ S°+8 + ¢
3oy, dp 25123
S35 7@ +8Q)N + (@) = 35 <

a contradiction.
Let £ € [2,35]. Then 3 < 8 and, if |4;| > 1, then

m(&f 30) + 3¢ M|2+(8§ +§)M |3_11§ 3¢ +88+

3-vV5, .3 3-V5, 3-45 3 1
-3(=)+38 5 3=538+=-—-(240+-)V5<1
5 =38+ () +8(+2N<,
a contradiction. Therefore the real eigenvalue A, of the matrix A has absolute value strictly less than 1.

Next, assume that y # 0. Then, from (3.16) we have

< 11(

y* =3x% + 2(82% = 30)x + 3% (3.18)
Substituting y? into (3.15) we obtain the equation
B(x) = x> + (882 = 30)x* + F2(16* = 120 +3)x+ & + 30 - =
Here, we observe that B(0) = £3(¢% + 3¢ — 1) > 0, because

1 VI13-3
1>>=> .
3 2

Also, we have
B(-0.2) = - 0.2{* = 0.6¢° — 0.282% — 0.12¢ — 0.008.

Assuming that B(-0.2) > 0, we must have
02 06 028 012 0.008 02 06 038

1>{+?+ §3+§4+ §5 >? {_g

=12+04V5> 1,

a contradiction. Thus the function B admits a real root X in the interval (—0.2, 1). We claim that such a
number % with this property is unique. Indeed, we observe that the derivative

B'(x) = 3x%(8% = 30)x + £2(16£% — 120 + 3)
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is positive, since its discriminant
1604 — 168° = 162°(¢ - 1)
is negative, for £ € (0, 1). Hence, B is strictly increasing and so our claim is proved.
Next assume that A,, A3 are the two complex roots of (3.14). Obviously, these numbers are conjugate
so they have the same absolute value (2> + $?)!/2, where § is any value of the variable y given in (3.18)
with x = X. Now we observe that

B4+ =48 + 287 - 30)F + 3% < 4% + 2|87 = 3L||%| + 387 < 0.16 + 04827 — 37| + 322

If £ € (3, 3], then

3
£2+9<016+12,-0272 <016+ 12 % = 0.61 < 1.
Also, if £ > %,then

3 9
P2 +92<016+62%2-120=62(0 - =) - — +0.16
F+y < +6.2¢ 4 04 31) 55t

3-145 35 9
T3 —E+0.16~0.606<1.

Summarizing all previous results, we see that the three roots of the characteristic equation (3.14)
have absolute values strictly less than 1. Hence, the matrix A is stable. After all these derivations, we
apply Theorem 3.1 and conclude the following result:

<6.2(

Theorem 3.3. If p € (43'1’ 1) and m = 2 the discrete equation (1.2) admits a unique equilibrium y =
%(1 + /1 + 4p) which is asymptotically stable.

3.4. The case E,,, form > 2.

As we have shown in section 2, in the general case, a constant solution Q := (¢1,92,"** sGqm+1)
satisfies Eq (3.7), where ¢ is the inverse of any of the coordinates of Q. If m = 1 this equation becomes
(3.9) and if m = 2, it becomes (3.13). In order to obtain the solutions of (3.7), we observe that a
solution of equation 6(¢) = t solves Eq (3.7), too, which in turn says that the pointa = (1 + /1 +4p)/2
is a solution, for allm = 0, 1,2,3, - -- Also, if m is odd, then any solution of (3.9), is a solution of (3.7).
Indeed, by using a graphing calculator we can see that if m is even, there is only one positive root of
(3.9) and this is a. However, if m is odd, then there are three positive roots of it, as in case m = 1. We
close this work with the following conjecture:

Conjecture: For p € (%, 1) the solutions of E,, have a behaviour similar to E,, for m odd, and
similar to E,, for m even.

4. Discussion

We are interested in the asymptotic behaviour of equation E,,, when p is a real number in the interval
(0, 1). The results are coming to push further the study presented in [24], when the case p € (0,1/2) is
discussed. The existence of a globally asymptotically stable equilibrium is shown for the case p € [%, %]
and any m. We give a partial answer to the problem when p € (%, 1) and m = 1,2, but some graphing
settings push us to believe that for p in this interval the behaviour of the solutions is exactly like the
two cases, we have examined. See Figure 1.
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0.5¢

0.5

-0.5¢+

_1-..
Figure 1. For p € (%, 1) Eq (3.7) admits three roots in the interval (0, 1) if m is odd and it
admits only one root if m is even.

5. Conclusions

It is proved that for p € [%, %] the equilibrium y of Eq (1.2) is globally asymptotically stable for

solutions with positive initial values. For p € (%, 1) there is no unified behaviour for the stability
of solutions, but it depends on the value of the delay m. If m = 1, Eq (1.2) admits an unstable
equilibrium plus a locally stable 2-periodic solution. However, if m = 2, then there is a unique
(positive) asymptotically stable equilibrium point.
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