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Abstract: In [24], E. Tasdemir, et al. proved that the positive equilibrium of the nonlinear discrete
equation xn+1 = 1 + p xn−m

x2
n

is globally asymptotically stable for p ∈ (0, 1
2 ), locally asymptotically stable

for p ∈ (1
2 ,

3
4 ) and it was conjectured that for any p in the open interval ( 1

2 ,
3
4 ) the equilibrium is

globally asymptotically stable. In this paper, we prove that this conjecture is true for the closed interval
[ 1

2 ,
3
4 ]. In addition, it is shown that for p ∈ ( 3

4 , 1) the behaviour of the solutions depend on the delay m.
Indeed, here we show that in case m = 1, there is an unstable equilibrium and an asymptotically stable
2-periodic solution. But, in case m = 2, there is an asymptotically stable equilibrium. These results are
obtained by using linearisation, a method lying on the well known Perron’s stability theorem ( [17], p.
18). Finally, a conjecture is posed about the behaviour of the solutions for m > 2 and p ∈ ( 3

4 , 1).
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1. Introduction

In their book [16], Kulenović and Ladas initiated a systematic study of the difference equation

xn+1 =
α + βxn + γxn−1

A + Bxn +Cxn−1
, n = 0, 1, 2, · · ·

for nonnegative real numbers α, β, γ, A, B,C such that B+C > 0 and α+β+γ > 0, and for nonnegative
or positive initial conditions x−1, x0. The periodicity of the solutions of this equation was discussed by
Grove and Ladas in [10]. By setting α = A = C = 0, we get

xn+1 =
β

B
+
γ

B
xn−1

xn
, (1.1)
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an equation studied in several works, for instance, in Amleh et al. [3], Camouzis and Devault [5],
Wan-Sheng He et al. [12], which is a special case of

xn+1 = p +
xn−k

xn
.

The behaviour of the solutions of this equation as well as of the more general equation

xn+1 = α +
xs

n−m

xr
n

was studied in a great number of papers especially by Stević (see, e.g. [18–22] and the references
therein), as well as by Berenhaut and Stević [4] and El-Owaidy [7] and it differs completely from the
behaviour of equation

yn+1 = A +
yp

n

yr
n−k

studied e.g. by Stević [23] in the general case for p, r, but for k = 1 and by Abu-Saris and Devault
in [1] when p = r = 1 and k is any positive integer. A more general version of Eq (1.1) is

xn+1 = α +
xn−k

f (xn, · · · , xn−k+1)
,

investigated in [14, 15]. A basic condition in this situation is that the denominator f does not vanish at
(0, 0, · · · , 0) and so it includes the specific case

xn+1 = α + βxn−1e−xn

investigated by e.g., El-Metwally et al. [8], Fotiades and Papaschinopoulos [9]. On the other hand,
in [11] Hamza and Morsy studied the discrete equation

xn+1 = A +
xn−1

xk
n
,

where A > 0 and k ∈ N. See, also, Yalcinkaya [25].
One of the results of the present work is that for all p in the closed interval [ 1

2 ,
3
4 ], the unique positive

equilibrium ȳ = 1
2 (1 +

√
1 + 4p) of the discrete equation

Em : xn+1 = 1 + p
xn−m

x2
n

(1.2)

is globally asymptotically stable, for all values m = 1, 2, · · · . Thus, we give a positive answer to a
conjecture posed in a recent paper by Tasdemir, Göcen and Soykan, see [24]. In that work, it is shown
that, if m ≥ 1, then for 0 < p < 3

4 , the equilibrium point is locally asymptotically stable, while, if
0 < p < 1

2 the equilibrium is globally asymptotically stable. Also, by using numerical simulations, it
was conjectured that for p in the semi-closed interval [ 1

2 ,
3
4 ) the equilibrium ȳ is globally asymptotically

stable. Here, we show that generally this conjecture is true and we have global stability for all p in the
closed interval [1

2 ,
3
4 ]. Notice that for p ∈ (0, 1) all solutions of Eq (1.2) with positive initial values are

bounded uniformly with initial values in bounded sets and stay greater than 1.
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The results about stability for p ∈ (0, 3
4 ) are independent of the delay m. This is not true for the

values of p in the interval (3
4 , 1). In this paper, we present two more results when p belongs to this

interval and m = 1, or m = 2. In the first case, we show that there exist a locally asymptotically stable
2-periodic solution and an unstable equilibrium point. An explicit example is also presented. For
m = 2, we show that there is a unique equilibrium which is locally asymptotically stable. These results
are shown by using the method by linearisation. Finally, we suggest that for the general value of the
delay m the behaviour of the solutions do not change, and, if m is an odd positive integer, then they are
as in case m = 1, while if m is even, they are as in case m = 2.

2. The case 1
2 ≤ p ≤ 3

4

As we said previously, for the values of p in the interval (0, 1
2 ) the global asymptotic stability of

the equilibrium is proved in [24]. Now, first, we assume that p ∈ [ 1
2 ,

3
4 ]. In this section we show the

following result:

Theorem 2.1. The equilibrium point ȳ = 1
2 (1 +

√
1 + 4p) of Eq (1.2) is unique and it is globally

asymptotically stable if 1
2 ≤ p ≤ 3

4 .

Proof. Let (xn) be a solution with positive initial values. Then, we have xn > 1, for all n and moreover

xn+1 ≤ 1 + pxn−m ≤ 1 + p + p2xn−2m−1 ≤ 1 + p + p2 + · · · + pkxn−km−(k−1) ≤ 1 + p + p2 + · · · + pkB,

where B := max{xi : i = −m,−m + 1, · · · , 0} and k is the integer part of the number 1 + n
m+1 . This

integer is such that
1 +

n
1 + m

≥ k >
n

1 + m
.

Thus we obtain −m ≤ n − km − (k − 1) ≤ 0. Hence, we have

xn ≤ 1 + p + p2 + · · · + B =
1

1 − p
+ B.

These facts guarantee that any solution with positive initial values is bounded uniformly with initial
values in bounded sets and all its terms stay greater than 1.

Now consider any solution with positive initial values. According to [13], there are full limiting
sequences S n and In satisfying Eq (1.2) for all n ∈ Z and such that S := S 0 = lim sup xn and I := I0 =

lim inf xn. This implies that

S = 1 + p
S n−m

S 2
n
≤ 1 + p

S
I2 (2.1)

and
I = 1 + p

In−m

I2
n
≥ 1 + p

I
S 2 . (2.2)

Notice that p < 1 ≤ I ≤ S . From (2.1) and (2.2) we obtain

S + p
I
S
≤ S I ≤ I + p

S
I
.

Thus

S − I ≤ p
S 2 − I2

S I
,
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which implies the following cases:
1) I = S , which case proves the result, and
2) I < S and

1 ≤ p(
1
I
+

1
S

) < 2p
1
I
.

It is clear that if p = 1
2 , then I < 1, which is impossible. Thus, the second case occurs only when

p ∈ ( 1
2 ,

3
4 ]. So, consider the second case and we shall arrive to a contradiction. Then, we have 1 < I <

2p =: a1.

Assume that p < 3
4 . From (2.2) we have

a1(1 −
p

S 2 ) = 2p(1 −
p

S 2 ) > I(1 −
p

S 2 ) ≥ 1,

and so S >
√

pa1
a1−1 =: b1. It is easy to see that b1 > 1. From (2.2) we get

b1(1 −
p
I2 ) < S (1 −

p
I2 ) ≤ 1

and therefore

I <

√
pb1

b1 − 1
=: a2.

Now, if a2 ≤ 1, it must be true that I = 1. Then, from (2.2) we get 1 ≥ 1 + p 1
S 2 , which is a

contradiction. Thus, a2 > 1 and, since p > 1
2 , we can easily see, that the inequality a1 > a2 holds.

Again, from (2.1), we obtain

S >
√

pa2

a2 − 1
=: b2.

It is obvious that b1 < b2. We continue in this way and obtain two sequences (an) and (bn) such that
I < an, bn < S and

an+1 =

√
pbn

bn − 1
, bn =

√
pan

an − 1
,

for all indices n.
Since p < 3

4 we have b1 > a1. Hence, b1 > a2 and so b2 > a2. It follows that bn > an, for all
n = 1, 2, · · · and moreover the sequence (an) is decreasing and (bn) is increasing. Since these sequences
are bounded, they converge to some positive reals LI and LS respectively, such that LI < LS . Therefore,
we have

LI =

√
pLS

LS − 1
and LS =

√
pLI

LI − 1
,

from which the relations
LI = 1 + p

LI

L2
S

, LS = 1 + p
LS

L2
I

(2.3)

follow. From these relations we obtain

LS L2
I + pL2

S = L2
S L2

I = L2
S LI + pL2

I .
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So
LILS = p(LI + LS ).

Also, we have
L2

S LI − LS L2
I = L2

S − L2
I − p(LS − LI).

Thus
LS LI = LS + LI − p.

Hence,

LI + LS =
p

1 − p
and LILS =

p2

1 − p
.

Therefore the quantities LI and LS are the roots of the quadratic equation

z2 −
p

1 − p
z +

p2

1 − p
= 0. (2.4)

If p < 3
4 , this equation does not have real roots, which implies that in this case Eq (2.4) does not exist.

So we must have I = S .
If p = 3

4 , then, this equation has equal roots. Thus, LI = LS , which is impossible. The proof of the
theorem is complete.

3. The case 3
4 < p < 1

In this section we shall discuss the asymptotic behaviour of the solutions of Eq (1.2) when 3
4 < p <

1. For our purpose we need to rewrite the equation in a system form. By the use of this form we can
extract some results about the existence of periodic solutions of the equation.

Let (xn) be a solution with positive initial values. To simplify the writings we consider the function

ϕ(u, v) := 1 + p
u
v2 , u, v > 0.

In the (m + 1)-vector space, define the sequence of vectors

y( j)n := x(m+1)n+ j−1, j = 1, 2, · · · ,m + 1, n = 1, 2, · · ·

and observe that it satisfies the system of equations

y(1)n+1 = ϕ(y(1)n, y(m + 1)n), (3.1)
y(2)n+1 = ϕ(y(2)n, y(1)n+1) = ϕ(y(2)n, ϕ(y(1)n, y(m + 1)n)), (3.2)
y(3)n+1 = ϕ(y(3)n, y(2)n+1) = ϕ(y(3)n, ϕ(y(2)n, ϕ(y(1)n, y(m + 1)n))), (3.3)

...

y(m + 1)n+1 = ϕ(y(m + 1)n, ϕ(y(m)n, · · · ϕ(y(1)n, y(m + 1)n))). (3.4)

This system can be written in the simple vectorial form

Yn+1 = H(Yn), (3.5)
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where Yn is the (m + 1)-vector (y(1)n, y(2)n, · · · , y(m + 1)n)T and H is the vector valued function with
coordinates the right parts of system (3.1)–(3.4).

From here we can show that Eq (1.2) has a (m + 1)-periodic solution. To do that it is enough to
prove that Eq (3.5) admits at least one constant solution. In the (m + 1)-dimensional space Rn define
the fixed point problem

X = F(X), X ∈ I := [0, 1]m+1

where X = (r1, r2, · · · rm+1)T ,

F(X) := (θ(rm+1), θ(r1), · · · , θ(rm)

and
θ(r) := 1 − pr2.

It is clear that the continuous function F maps the compact connected set I into the set [1− p, 1]m+1 ⊆ I,
and therefore, due to the well known Brouwer’s fixed point theorem (see, e.g. [2], p. 63), it has a (not
necessarily unique) fixed point Q := (q1, q2, · · · qm+1)T ,which, obviously, belongs to the set [1−p, 1)m+1.

The vector equation Q = F(Q) can be written in the form

q j = θ(q j−1), j = 1, 2, · · · ,m + 1, (3.6)

with q0 = qm+1. Solving this system with respect to any of the coordinates of Q, we see that each of
them satisfies the equation

S (t) := θ(m+1)(t) = t. (3.7)

We set C := (c1, c2, · · · , cm+1), where

c j := 1/q j, j = 1, 2, · · · ,m + 1

and observe that its coordinates are greater than 1 and they satisfy the algebraic system

c j = 1 + p
c j

c2
j−1

, j = 1, 2, · · · ,m + 1,

where we have set c0 = cm+1. It is clear that the sequence c1, c2, · · · , cm+1, c1, c2, · · · is a (m+1)-periodic
solution of the original equation.

The vector C is not necessarily unique and its coordinates might be equal. The latter means that the
number m+1 is not necessarily the least period of C. Notice that, as we shall see later, for m = 1, C is a
vector of the form (a, a)T , namely, an equilibrium of the equation, or a 2-periodic solution a, b, a, b, · · ·
with a , b. But, for m = 2, C is a vector of the form (a, a, a)T , with a > 1 and it is unique.

To proceed to our discussion we need to refer to the following result, which is implied from the
classical result due to Perron ( [17], p. 18):

Theorem 3.1. ( [6], p. 311) If T is an n-dimensional differentiable function with fixed point X and J
is the Jacobian matrix of T evaluated at X, then X is a locally stable fixed point if all eigenvalues of J
have absolute value less than 1. If at least one of these absolute values is strictly greater than 1, the
fixed point is unstable.

In the sequel we shall discuss the cases m = 0,m = 1,m = 2 and, finally, we shall give some
remarks for the general case.

AIMS Mathematics Volume 8, Issue 10, 22714–22729.



22720

3.1. The case E0

It is obvious that in case m = 0, Eq (1.2) becomes xn+1 = 1 + p
xn
, which has the equilibrium

c = 1
2 (1 +

√
1 + 4p) as a global attractor.

3.2. The case E1

Here we discuss the behaviour of the solutions of the discrete equation (1.2) in case m = 1 and
p ∈ ( 3

4 , 1) and we prove the following result:

Theorem 3.2. Assume that m = 1. Then, the system of equations

α = 1 + p
α

β2 , β = 1 + p
β

α2 , (3.8)

has solutions the pair of numbers

α =
1
2

p
1 − p

(1 +
√

4p − 3), β =
1
2

p
1 − p

(1 −
√

4p − 3)

and the constant number
γ =

1
2

(1 +
√

1 + 4p).

The pair (α, β) produces the sequence α, β, α, β, · · · , which is a two-periodic solution of Eq (1.2) and
it is asymptotically stable. The fixed point γ is an unstable point.

Proof. In this case the constant solution of Eq (3.5) is the vector (c(1), c(2))T , where c(1) = α and
c(2) = β. Then, these numbers satisfy relations (2.3) and so they solve Eq (2.4). Thus, they are equal
to the suggested values α = 1

2
p

1−p (1+
√

4p − 3) and β = 1
2

p
1−p (1−

√
4p − 3). If α = β, then we have the

equation α = 1 + p 1
α
, whose the positive solution is equal to c.

Let (xn) be a solution of Eq (1.2) with positive initial values. We set y(1)n := x2n and y(2)n := x2n+1.
These sequences satisfy the system

y(1)n+1 = ϕ(y(1)n, y(2)n), y(2)n+1 = ϕ(y(2)n, ϕ(y(1)n, y(2)n).

Obviously this system has the equilibrium (α, β), whose the coordinates are the two roots of Eq (2.4),
as well as the number k. Since p > 3

4 we can easily see that 1 < β < α and

p
2(1 − p)

< α <
p

1 − p
.

Notice that the numbers a, b, which are greater than 1 and satisfy the polynomial equation

x4 − x3 − p(x2 − p)2 = 0.

So, by setting x := 1
t , we see that 1

a and 1
b satisfy the Eq (3.7) for m = 1, namely

θ2(t) = θ(θ(t)) = 0, (3.9)

where t ∈ (0, 1).

AIMS Mathematics Volume 8, Issue 10, 22714–22729.



22721

Next we set un := y(1)n and vn := y(2)n and let zn stand for the vector (un, vn)T . The sequences
(un), (vn) satisfy the system of relations

un+1 = 1 + p
un

(vn)2 , vn+1 = 1 + p
(vn)5

[(vn)2 + p(un)]2 ,

which can be written in the form

zn+1 =

(
un+1

vn+1

)
=

(
ϕ(un, vn)

ϕ(vn, ϕ(un, vn))

)
=: K(zn).

where f (u, v) := ϕ(u, v) and
g(u, v) := ϕ(v, ϕ(u, v))

are rational functions defined on the open square interval (0,+∞)2 and such that f (α, β) = α and
g(α, β) = β. Let A be the Jacobian matrix of the operator K:

A :=
(

fu(α, β) fv(α, β)
gu(α, β) gv(α, β)

)
=

 p
β2

−2(α−1)
β

−2p2

βα3
p(5α−4)
α3

 .
We shall show that the matrix A is stable, or equivalently, its spectral radius is less than 1. To prove

it, first, we observe that

tr(A) =
α3 − α2 + p(5α − 4)

α3 .

Since the function
γ(α) := α3 − α2 + p(5α − 4)

satisfies γ(1) = p > 0 and
γ′(α) = 3α2 − 2α + 5p > 0,

for all α, (notice that its discriminant is negative), it follows that the quantity tr(A) is positive.
Also, the determinant |A| of the matrix A is equal to

|A| =
p2

α2β2 ,

which is positive.
Next, we claim that the characteristic values are real numbers. Indeed, the discriminant of the

characteristic equation
λ2 − tr(A)λ + |A| = 0

is equal to
tr2(A) − 4|A|.

The fact that this quantity is nonnegative is equivalent to the inequality

[(α2(α − 1) + p(5α − 4)]2 − 4pα3(α − 1) ≥ 0.

Since α > 1, the left side of the previous inequality is greater than or equal to [(α2(α−1)− p(5α−4)]2,

which is nonnegative and so the claim is proved.
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22722

It remains to show that the matrix A is stable. First, we observe that tr(A) ≤ 2. Indeed, we have

2 − tr(A) = 2 −
a3 − a2 + p(5a − 4)

a3 =
a3 + a2 − p(5a − 4)

a3

≥
a2 + a − 5a + 4

a3 =
a2 − 4a + 4

a3 =
(a − 2)2

a3 ≥ 0.

Therefore, the fact that the greater root of the characteristic equation is strictly less than 1 is equivalent
to the inequality

|A| − tr(A) + 1 > 0,

or, equivalently, to the inequality

α2 − 4pα + 3p > 0. (3.10)

Replacing a with its value, this inequality is equivalent to

6p2 −
31
4

p + 3 +
p
2

(4p − 3)3/2 > 0.

Obviously, this is true since the left side can be written as

6(p −
31
48

)2 +
191
384
+

p
2

(4p − 3)3/2,

which is positive for p in the open interval (3
4 , 1). Therefore, relation (3.10) is true.

Now, we can apply Theorem 3.1 and the proof is complete as the equilibrium (α, β) is concerned.
Next, we shall check what is going on with the equilibrium γ. In this case, we see that all steps of

the previous proof work equally well with γ in the place of α and β, except relation (3.10), which, we
shall show, is not satisfied.

Indeed, to see that the inequality

[1 +
√

1 + 4p
2

]2
− 4p

1 +
√

1 + 4p
2

+ 3p > 0

is not true, we observe that it is equivalent to

1 + 4p > (4p − 1)
√

1 + 4p,

or
√

1 + 4p > 4p − 1, or p < 3
4 , which is not true. This completes the proof of the theorem.

An application

Consider the case p = 0.8 and m = 1. Then we have α ≈ 2.894 and β ≈ 1.106 approximately. For
the initial values the points x0 = x1 = 1, the corresponding solution is as in the following matrix:

AIMS Mathematics Volume 8, Issue 10, 22714–22729.
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x0 = 1 x1 = 1 x2 = 1.8 x3 = 1.247 x4 = 1.926 x5 = 1.269
x6 = 1.957 x7 = 1.265 x8 = 1.978 x9 = 1.258 x10 = 1.999 x11 = 1.251
x12 = 2.029 x13 = 1.236 x14 = 2.062 x15 = 1.232 x16 = 2.086 x17 = 1.226
x18 = 2.110 x19 = 1.220 x20 = 2.134 x21 = 1.214 x22 = 2.158 x23 = 1.206
x24 = 2.187 x25 = 1.201 x26 = 2.213 x27 = 1.196 x28 = 2.237 x29 = 1.191
x30 = 2.261 x31 = 1.186 x32 = 2.285 x33 = 1.181 x34 = 2.310 x35 = 1.177
x36 = 2.334 x37 = 1.172 x38 = 2.359 x39 = 1.168 x40 = 2.383 x41 = 1.164
x42 = 2.407 x43 = 1.160 x44 = 2.431 x45 = 1.157 x46 = 2.452 x47 = 1.153
x48 = 2.475 x49 = 1.150 x50 = 2.497 x51 = 1.147 x52 = 2.518 x53 = 1.144
x54 = 2.539 x55 = 1.141 x56 = 2.560 x57 = 1.139 x58 = 2.578 x59 = 1.137
x60 = 2.595 x61 = 1.135 x62 = 2.611 x63 = 1.133 x64 = 2.627 x65 = 1.131
x66 = 2.642 x67 = 1.129 x68 = 2.658 x69 = 1.127 x70 = 2.674 x71 = 1.126
x72 = 2.687 x73 = 1.124 x74 = 2.701 x75 = 1.123 x76 = 2.713 x77 = 1.122
x78 = 2.724 x79 = 1.120 x80 = 2.737 x81 = 1.119 x82 = 2.748 x83 = 1.118
x84 = 2.758 x85 = 1.117 x86 = 2.768 x87 = 1.116 x88 = 2.777 x89 = 1.115
x90 = 2.786 x91 = 1.114 x92 = 2.795 x93 = 1.114 x94 = 2.801 x95 = 1.113
x96 = 2.808 x97 = 1.112 x98 = 2.816 x99 = 1.112 x100 = 2.821 x101 = 1.111
x102 = 2.828 x103 = 1.111 x104 = 2.832 x105 = 1.110 x106 = 2.838 x107 = 1.110
x108 = 2.842 x109 = 1.109 x110 = 2.848 x111 = 1.109 x112 = 2.852 x113 = 1.109
x114 = 2.855 x115 = 1.108 x116 = 2.860 x117 = 1.108 x118 = 2.863 x119 = 1.108
x120 = 2.865 x121 = 1.107 x122 = 2.870 x123 = 1.107 x124 = 2.873 x125 = 1.107
x126 = 2.875 x127 = 1.107 x128 = 2.876 x129 = 1.107 x130 = 2.877 x131 = 1.106
x132 = 2.881 x133 = 1.106 x134 = 2.884 x135 = 1.106 x136 = 2.886 x137 = 1.106
x138 = 2.887 x139 = 1.106 x140 = 2.888 x141 = 1.106 x142 = 2.889 x143 = 1.106

Note: The subsequence (x2n) approaches the value α ≈ 2.894 and the subsequence (x2n+1) approaches the value β ≈ 1.106.

3.3. The case E2

In this subsection we discuss the behaviour of the solutions of the discrete equation (1.2) where
m = 2 and p ∈ ( 3

4 , 1).
In this case Eq (3.5) is formulated by using three variables un, vn,wn and it takes the form

un+1 = ϕ(un,wn) vn+1 = ϕ(vn, ϕ(un,wn)), wn+1 = ϕ(wn, ϕ(vn, ϕ(un,wn))), (3.11)

where ϕ(u, v) := 1+ p u
v2 . A fixed point of this system is a triple a, b, c in the interval (1,+∞) satisfying

the system

a = 1 + p
a
c2 , b = 1 + p

b
a2 , c = 1 + p

c
b2 .

Since a, b, c > 1, we can easily see that all numbers a, b, c are smaller than 1
1−p . Therefore we have

1
1 − p(1 − p)2 < a, b, c <

1
1 − p

. (3.12)

Expressing b in terms of a and c in terms of b, substitute in the first equation and obtain the algebraic
equation

Q(a) := a8 − a7 − p[a4 − p(a2 − p)2]2 = 0.
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By symmetry, it follows that this equation is, also, satisfied by the numbers b and c. We shall show that
this algebraic equation admits a unique root in the interval (1,+∞). To this end we put t := 1

a ∈ (0, 1)
and see that t satisfies Eq (3.7) for m = 2, namely the equation

θ3(t) = θ(θ2(t)) = t. (3.13)

Now we observe that the algebraic equation

P(t) := p(1 − pt2)2 − 1 +

√
1 − t

p
= 0,

has a unique root, because the function P vanishes at unique point in the interval (0, 1). Indeed, it holds
that

P(0) = p − 1 +
1
√

p
>

3
4
− 1 + 1 > 0, P(1) = p(1 − p)2 − 1 < 0,

and P is strictly decreasing on the interval (0, 1), since,

P′(t) = −4p2t(1 − pt2) −
1

2
√

p
√

1 − t
< 0.

This is because t2 < 1 < 1/p.
Therefore the function P admits a unique real root in the interval [ 3

4 , 1]. This means that the three
numbers a, b, c are equal, obviously, to 1

2 (1 +
√

1 + 4p).
Now, we set

f (u, v,w) := ϕ(u,w), g(u, v,w) := ϕ(v, ϕ(u,w)), h(u, v,w) := ϕ(w, ϕ(v, ϕ(u,w)))

and let F := ( f , g, h)T . It is clear that it holds F(a, a, a) = (a, a, a)T . To proceed, we form the Jacobian
matrix A of the vector valued function F at the fixed point (a, a, a)T and obtain

A =


a−1

a 0 −2(a−1)
a

−
2(a−1)2

a2
a−1

a
4(a−1)2

a2

4(a−1)3

a3
−2(a−1)2

a2
a−1

a −
8(a−1)3

a3

 .
Next, we check the applicability of Theorem 3.1. This means that we have to show that the spectral
radius of the matrix A is less than 1.

Indeed, the characteristic equation of A is

λ3 + (8ζ2 − 3ζ)λ2 + 3ζ2λ − 8ζ5 − ζ3 = 0, (3.14)

where ζ denotes the fraction a−1
a , whose maximum interval of existence is equal to [1

3 ,
3−
√

5
2 ] ⊂ (0, 1).

Setting λ = x+ iy we split the previous equation into the real part and imaginary part and obtain the
pair of equations

x3 − 3xy2 + (8ζ2 − 3ζ)(x2 − y2) + 3ζ2x − 8ζ5 − ζ3 = 0, (3.15)

y(3x2 − y2 + 2(8ζ2 − 3ζ)x + 3ζ2) = 0. (3.16)
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If y = 0 we have a real eigenvalue λ1, which is the real root of the first equation when y = 0. Thenit
satisfies

λ3
1 + (8ζ2 − 3ζ)λ2

1 + 3ζ2λ1 − 8ζ5 − ζ3 = 0. (3.17)

Assume that |λ1| ≥ 1. Since 3
8 ∈ [1

3 ,
3−
√

5
2 ], the interval [ 1

3 ,
3−
√

5
2 ] is divided into two subintervals:

[
1
3
,

3 −
√

5
2

] = [
1
3
,

3
8

] ∪ (
3
8
,

3 −
√

5
2

].

Let ζ ∈ [ 1
3 ,

3
8 ]. Then, we have 3 > 8ζ. Therefore from (3.17), we obtain

1 ≤
1
|λ1|

(3ζ − 8ζ2) + 3ζ2 1
|λ1|

2 + (8ζ5 + ζ3)
1
|λ1|

3 ≤ 3ζ − 5ζ2 + 8ζ5 + ζ3

≤ 3
3
8
− 5(

1
3

)2 + 8(
3
8

)5 + (
3
8

)3 =
25123
36864

< 1,

a contradiction.
Let ζ ∈ [ 3

8 ,
3−
√

5
2 ]. Then 3 ≤ 8ζ and, if |λ1| ≥ 1, then

1 ≤
1
|λ1|

(8ζ2 − 3ζ) + 3ζ2 1
|λ1|

2 + (8ζ5 + ζ3)
1
|λ1|

3 ≤ 11ζ2 − 3ζ + 8ζ5 + ζ3

≤ 11(
3 −
√

5
2

)2 − 3(
3
8

) + 8(
3 −
√

5
2

)5 + (
3 −
√

5
2

)3 = 538 +
3
8
− (240 +

1
2

)
√

5 < 1,

a contradiction. Therefore the real eigenvalue λ1 of the matrix A has absolute value strictly less than 1.
Next, assume that y , 0. Then, from (3.16) we have

y2 = 3x2 + 2(8ζ2 − 3ζ)x + 3ζ2. (3.18)

Substituting y2 into (3.15) we obtain the equation

B(x) := x3 + (8ζ2 − 3ζ)x2 + ζ2(16ζ2 − 12ζ + 3)x + ζ5 + 3ζ4 − ζ3 = 0.

Here, we observe that B(0) = ζ3(ζ2 + 3ζ − 1) > 0, because

1 > ζ ≥
1
3
>

√
13 − 3

2
.

Also, we have
B(−0.2) = ζ5 − 0.2ζ4 − 0.6ζ3 − 0.28ζ2 − 0.12ζ − 0.008.

Assuming that B(−0.2) > 0, we must have

1 >
0.2
ζ
+

0.6
ζ2 +

0.28
ζ3 +

0.12
ζ4 +

0.008
ζ5 >

0.2
ζ
+

0.6
ζ
≥

0.8
3−
√

5
2

= 1.2 + 0.4
√

5 > 1,

a contradiction. Thus the function B admits a real root x̂ in the interval (−0.2, 1).We claim that such a
number x̂ with this property is unique. Indeed, we observe that the derivative

B′(x) = 3x2(8ζ2 − 3ζ)x + ζ2(16ζ2 − 12ζ + 3)
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is positive, since its discriminant
16ζ4 − 16ζ3 = 16ζ3(ζ − 1)

is negative, for ζ ∈ (0, 1). Hence, B is strictly increasing and so our claim is proved.
Next assume that λ2, λ3 are the two complex roots of (3.14). Obviously, these numbers are conjugate

so they have the same absolute value (x̂2 + ŷ2)1/2, where ŷ is any value of the variable y given in (3.18)
with x = x̂. Now we observe that

x̂2 + ŷ2 = 4x̂2 + 2(8ζ2 − 3ζ)x̂ + 3ζ2 ≤ 4x̂2 + 2|8ζ2 − 3ζ ||x̂| + 3ζ2 ≤ 0.16 + 0.4|8ζ2 − 3ζ | + 3ζ2.

If ζ ∈ ( 1
3 ,

3
8 ], then

x̂2 + ŷ2 ≤ 0.16 + 1.2ζ − 0.2ζ2 < 0.16 + 1.2 ×
3
8
= 0.61 < 1.

Also, if ζ > 3
8 , then

x̂2 + ŷ2 ≤ 0.16 + 6.2ζ2 − 1.2ζ = 6.2(ζ −
3

31
)2 −

9
155
+ 0.16

≤ 6.2(
3 −
√

5
2

−
3

31
)2 −

9
155
+ 0.16 ≈ 0.606 < 1.

Summarizing all previous results, we see that the three roots of the characteristic equation (3.14)
have absolute values strictly less than 1. Hence, the matrix A is stable. After all these derivations, we
apply Theorem 3.1 and conclude the following result:

Theorem 3.3. If p ∈ ( 3
4 , 1) and m = 2 the discrete equation (1.2) admits a unique equilibrium ȳ =

1
2 (1 +

√
1 + 4p) which is asymptotically stable.

3.4. The case Em, for m > 2.

As we have shown in section 2, in the general case, a constant solution Q := (q1, q2, · · · , qm+1)
satisfies Eq (3.7), where t is the inverse of any of the coordinates of Q. If m = 1 this equation becomes
(3.9) and if m = 2, it becomes (3.13). In order to obtain the solutions of (3.7), we observe that a
solution of equation θ(t) = t solves Eq (3.7), too, which in turn says that the point a = (1+

√
1 + 4p)/2

is a solution, for all m = 0, 1, 2, 3, · · · Also, if m is odd, then any solution of (3.9), is a solution of (3.7).
Indeed, by using a graphing calculator we can see that if m is even, there is only one positive root of
(3.9) and this is a. However, if m is odd, then there are three positive roots of it, as in case m = 1.We
close this work with the following conjecture:

Conjecture: For p ∈ (3
4 , 1) the solutions of Em have a behaviour similar to E1, for m odd, and

similar to E2, for m even.

4. Discussion

We are interested in the asymptotic behaviour of equation Em, when p is a real number in the interval
(0, 1). The results are coming to push further the study presented in [24], when the case p ∈ (0, 1/2) is
discussed. The existence of a globally asymptotically stable equilibrium is shown for the case p ∈ [1

2 ,
3
4 ]

and any m. We give a partial answer to the problem when p ∈ ( 3
4 , 1) and m = 1, 2, but some graphing

settings push us to believe that for p in this interval the behaviour of the solutions is exactly like the
two cases, we have examined. See Figure 1.
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Figure 1. For p ∈ (3
4 , 1) Eq (3.7) admits three roots in the interval (0, 1) if m is odd and it

admits only one root if m is even.

5. Conclusions

It is proved that for p ∈ [ 1
2 ,

3
4 ] the equilibrium ȳ of Eq (1.2) is globally asymptotically stable for

solutions with positive initial values. For p ∈ (3
4 , 1) there is no unified behaviour for the stability

of solutions, but it depends on the value of the delay m. If m = 1, Eq (1.2) admits an unstable
equilibrium plus a locally stable 2-periodic solution. However, if m = 2, then there is a unique
(positive) asymptotically stable equilibrium point.
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20. S. Stević, On the recursive sequence xn+1 = α + xp
n−1/x

p
n , J. Appl. Math. Comput., 18 (2005), 229–

234.

AIMS Mathematics Volume 8, Issue 10, 22714–22729.

http://dx.doi.org/https://doi.org/10.1006/jmaa.1999.6346
http://dx.doi.org/https://doi.org/10.1080/10236190500539543
http://dx.doi.org/https://doi.org/10.1007/0-387-27645-9
http://dx.doi.org/https://doi.org/10.1016/j.amc.2012.05.047
http://dx.doi.org/https://doi.org/10.1016/j.aml.2008.02.010
http://dx.doi.org/https://doi.org/10.1016/S0096-3003(03)00528-9
http://dx.doi.org/https://doi.org/10.1080/10236190008808232
http://dx.doi.org/https://doi.org/10.1515/dema-2005-0309
http://dx.doi.org/https://doi.org/10.1080/10236190410001659732
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2008.02.017


22729
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