Research article

An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes

  • Received: 27 May 2023 Revised: 02 July 2023 Accepted: 05 July 2023 Published: 14 July 2023
  • MSC : 65N08, 65N12

  • In this work, we construct and study a special isoparametric bilinear finite volume element scheme for solving anisotropic diffusion problems on general convex quadrilateral meshes. The new scheme is obtained by employing the Simpson rule to approximate the line integrals in the classical isoparametric bilinear finite volume element method. By using the cell analysis approach, we suggest a sufficient condition to ensure the coercivity of the new scheme. The sufficient condition has an analytic expression, which only involves the anisotropic diffusion tensor and the geometry of quadrilateral mesh. This yields that for any diffusion tensor and quadrilateral mesh, we can directly judge whether this sufficient condition is satisfied. Specifically, this condition covers the traditional $ h^{1+\gamma} $-parallelogram and some trapezoidal meshes with any full anisotropic diffusion tensor. An optimal $ H^1 $ error estimate of the proposed scheme is also obtained for a quasi-parallelogram mesh. The theoretical results are verified by some numerical experiments.

    Citation: Shengying Mu, Yanhui Zhou. An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes[J]. AIMS Mathematics, 2023, 8(10): 22507-22537. doi: 10.3934/math.20231147

    Related Papers:

  • In this work, we construct and study a special isoparametric bilinear finite volume element scheme for solving anisotropic diffusion problems on general convex quadrilateral meshes. The new scheme is obtained by employing the Simpson rule to approximate the line integrals in the classical isoparametric bilinear finite volume element method. By using the cell analysis approach, we suggest a sufficient condition to ensure the coercivity of the new scheme. The sufficient condition has an analytic expression, which only involves the anisotropic diffusion tensor and the geometry of quadrilateral mesh. This yields that for any diffusion tensor and quadrilateral mesh, we can directly judge whether this sufficient condition is satisfied. Specifically, this condition covers the traditional $ h^{1+\gamma} $-parallelogram and some trapezoidal meshes with any full anisotropic diffusion tensor. An optimal $ H^1 $ error estimate of the proposed scheme is also obtained for a quasi-parallelogram mesh. The theoretical results are verified by some numerical experiments.



    加载中


    [1] P. Zhu, R. Li, Generalized difference methods for second order elliptic partial differential equations. Ⅱ. Quadrilateral subdivision, Numer. Math. J. Chin. Univ., 4 (1982), 360–375.
    [2] R. E. Bank, D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal., 24 (1987), 777–787. https://doi.org/10.1137/0724050 doi: 10.1137/0724050
    [3] S. Chou, Q. Li, Error estimates in $L^2$, $H^1$ and $L^{\infty}$ in covolume methods for elliptic and parabolic problems: A unified approach, Math. Comput., 69 (2000), 103–120. https://doi.org/10.1090/S0025-5718-99-01192-8 doi: 10.1090/S0025-5718-99-01192-8
    [4] Z. Cai, On the finite volume element method, Numer. Math., 58 (1990), 713–735. https://doi.org/10.1007/BF01385651 doi: 10.1007/BF01385651
    [5] I. Mishev, Finite volume element methods for non-definite problems, Numer. Math., 83 (1999), 161–175. https://doi.org/10.1007/s002110050443 doi: 10.1007/s002110050443
    [6] P. Chatzipantelidis, R. Lazarov, Error estimates for a finite volume element method for elliptic PDEs in nonconvex polygonal domains, SIAM J. Numer. Anal., 42 (2005), 1932–1958. https://doi.org/10.1137/S0036142903427639 doi: 10.1137/S0036142903427639
    [7] S. Chou, X. Ye, Unified analysis of finite volume methods for second order elliptic problems, SIAM J. Numer. Anal., 45 (2007), 1639–1653. https://doi.org/10.1137/050643994 doi: 10.1137/050643994
    [8] R. Li, Z. Chen, W. Wu, Generalized difference methods for differential equations: Numerical analysis of finite volume methods, New York: Marcel Dekker, 2000.
    [9] Y. Lin, J. Liu, M. Yang, Finite volume element methods: An overview on recent developments, Int. J. Numer. Anal. Mod. B, 4 (2013), 14–34.
    [10] Z. Zhang, Q. Zou, Some recent advances on vertex centered finite volume element methods for elliptic equations, Sci. China Math., 56 (2013), 2507–2522. https://doi.org/10.1007/s11425-013-4740-8 doi: 10.1007/s11425-013-4740-8
    [11] J. Xu, Q. Zou, Analysis of linear and quadratic simplicial finite volume methods for elliptic equations, Numer. Math., 111 (2009), 469–492. https://doi.org/10.1007/s00211-008-0189-z doi: 10.1007/s00211-008-0189-z
    [12] Z. Chen, R. Li, A. Zhou, A note on the optimal $L^{2}$-estimate of the finite volume element method, Adv. Comput. Math., 16 (2002), 291–303. https://doi.org/10.1023/A:1014577215948 doi: 10.1023/A:1014577215948
    [13] R. E. Ewing, T. Lin, Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), 1865–1888. https://doi.org/10.1137/S0036142900368873 doi: 10.1137/S0036142900368873
    [14] C. Erath, D. Praetorius, Adaptive vertex-centered finite volume methods for general second-order linear elliptic partial differential equations, IMA J. Numer. Anal., 39 (2019), 983–1008. https://doi.org/10.1093/imanum/dry006 doi: 10.1093/imanum/dry006
    [15] Y. Li, R. Li, Generalized difference methods on arbitrary quadrilateral networks, J. Comput. Math., 17 (1999), 653–672.
    [16] Z. Zhang, Q. Zou, Vertex-centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems, Numer. Math., 130 (2015), 363–393. https://doi.org/10.1007/s00211-014-0664-7 doi: 10.1007/s00211-014-0664-7
    [17] T. Schmidt, Box schemes on quadrilateral meshes, Computing, 51 (1993), 271–292. https://doi.org/10.1007/BF02238536 doi: 10.1007/BF02238536
    [18] Q. Hong, J. Wu, A $Q_1$-finite volume element scheme for anisotropic diffusion problems on general convex quadrilateral mesh, J. Comput. Appl. Math., 372 (2020), 112732. https://doi.org/10.1016/j.cam.2020.112732 doi: 10.1016/j.cam.2020.112732
    [19] J. Lv, Y. Li, $L^2$ error estimates and superconvergence of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math., 37 (2012), 393–416. https://doi.org/10.1007/s10444-011-9215-2 doi: 10.1007/s10444-011-9215-2
    [20] Y. Lin, M. Yang, Q. Zou, $L^2$ error estimates for a class of any order finite volume schemes over quadrilateral meshes, SIAM J. Numer. Anal., 53 (2015), 2030–2050. https://doi.org/10.1137/140963121 doi: 10.1137/140963121
    [21] C. Nie, S. Shu, H. Yu, W. Xia, Superconvergence and asymptotic expansions for bilinear finite volume element approximation on non-uniform grids, J. Comput. Appl. Math., 321 (2017), 323–335. https://doi.org/10.1016/j.cam.2016.12.024 doi: 10.1016/j.cam.2016.12.024
    [22] W. He, Z. Zhang, Q. Zou, Maximum-norms error estimates for high-order finite volume schemes over quadrilateral meshes, Numer. Math., 138 (2018), 473–500. https://doi.org/10.1007/s00211-017-0912-8 doi: 10.1007/s00211-017-0912-8
    [23] Z. Chen, J. Wu, Y. Xu, Higher-order finite volume methods for elliptic boundary value problems, Adv. Comput. Math., 37 (2012), 191–253. https://doi.org/10.1007/s10444-011-9201-8 doi: 10.1007/s10444-011-9201-8
    [24] X. Wang, Y. Li, $L^2$ error estimates for high order finite volume methods on triangular meshes, SIAM J. Numer. Anal., 54 (2016), 2729–2749. https://doi.org/10.1137/140988486 doi: 10.1137/140988486
    [25] Y. Zhou, J. Wu, A unified analysis of a class of quadratic finite volume element schemes on triangular meshes, Adv. Comput. Math., 46 (2020), 71. https://doi.org/10.1007/s10444-020-09809-8 doi: 10.1007/s10444-020-09809-8
    [26] X. Wen, Y. Zhou, A coercivity result of quadratic finite volume element schemes over triangular meshes, Adv. Appl. Math. Mech., 15 (2023), 901–931. https://doi.org/10.4208/aamm.OA-2021-0311 doi: 10.4208/aamm.OA-2021-0311
    [27] M. Yang, A second-order finite volume element method on quadrilateral meshes for elliptic equations, ESAIM: M2AN, 40 (2006), 1053–1067. https://doi.org/10.1051/m2an:2007002 doi: 10.1051/m2an:2007002
    [28] J. Lv, Y. Li, Optimal biquadratic finite volume element methods on quadrilateral meshes, SIAM J. Numer. Anal., 50 (2012), 2379–2399. https://doi.org/10.1137/100805881 doi: 10.1137/100805881
    [29] Y. Zhou, Y. Zhang, J. Wu, A polygonal finite volume element method for anisotropic diffusion problems, Comput. Math. Appl., 140 (2023), 225–236. https://doi.org/10.1016/j.camwa.2023.04.025 doi: 10.1016/j.camwa.2023.04.025
    [30] Y. Zhang, X. Wang, Unified construction and $L^2$ analysis for the finite volume element method over tensorial meshes, Adv. Comput. Math., 49 (2023), 2. https://doi.org/10.1007/s10444-022-10004-0 doi: 10.1007/s10444-022-10004-0
    [31] Y. Zhou, Y. Jiang, Q. Zou, Three dimensional high order finite volume element schemes for elliptic equations, Numer. Methods Partial Differ. Eq., 39 (2023), 1672–1705. https://doi.org/10.1002/num.22950 doi: 10.1002/num.22950
    [32] Y. Zhou, J. Wu, A new high order finite volume element solution on arbitrary triangular and quadrilateral meshes, Appl. Math. Lett., 134 (2022), 108354. https://doi.org/10.1016/j.aml.2022.108354 doi: 10.1016/j.aml.2022.108354
    [33] S. Shu, H. Yu, Y. Huang, C. Nie, A symmetric finite volume element scheme on quadrilateral grids and superconvergence, Int. J. Numer. Anal. Mod., 3 (2006), 348–360.
    [34] Q. Hong, J. Wu, Coercivity results of a modified $Q_{1}$-finite volume element scheme for anisotropic diffusion problems, Adv. Comput. Math., 44 (2018), 897–922. https://doi.org/10.1007/s10444-017-9567-3 doi: 10.1007/s10444-017-9567-3
    [35] F. Fang, Q. Hong, J. Wu, Analysis of a special $Q_{1}$-finite volume element scheme for anisotropic diffusion problems, Numer. Math. Theor. Meth. Appl., 12 (2019), 1141–1167. https://doi.org/10.4208/nmtma.OA-2018-0080 doi: 10.4208/nmtma.OA-2018-0080
    [36] S. Chou, S. He, On the regularity and uniformness conditions on quadrilateral grids, Comput. Methods Appl. Mech. Eng., 191 (2002), 5149–5158. https://doi.org/10.1016/S0045-7825(02)00357-2 doi: 10.1016/S0045-7825(02)00357-2
    [37] P. Ciarlet, The finite element method for elliptic problems, Amsterdam: North-Holland, 1978.
    [38] D. Kershaw, Differencing of the diffusion equation in Lagrangian hydrodynamic codes, J. Comput. Phys., 39 (1981), 375–395. https://doi.org/10.1016/0021-9991(81)90158-3 doi: 10.1016/0021-9991(81)90158-3
    [39] G. Yuan, Z. Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227 (2008), 6288–6312. https://doi.org/10.1016/j.jcp.2008.03.007 doi: 10.1016/j.jcp.2008.03.007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1094) PDF downloads(113) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog