Research article

Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations

  • Received: 07 May 2023 Revised: 02 July 2023 Accepted: 10 July 2023 Published: 13 July 2023
  • MSC : 60F15

  • In the paper, the complete convergence and complete integral convergence for weighted sums of negatively dependent random variables under the sub-linear expectations are established. The results in the paper extend some complete moment convergence theorems from the classical probability space to the situation of sub-linear expectation space.

    Citation: Lunyi Liu, Qunying Wu. Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations[J]. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138

    Related Papers:

  • In the paper, the complete convergence and complete integral convergence for weighted sums of negatively dependent random variables under the sub-linear expectations are established. The results in the paper extend some complete moment convergence theorems from the classical probability space to the situation of sub-linear expectation space.



    加载中


    [1] S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Ito type, In: Stochastic analysis and applications, Berlin, Heidelberg: Springer, 2006,541–567. http://doi.org/10.1007/978-3-540-70847-6_25
    [2] S. Peng, Multi-dimensional G-brownian motion and related stochastic calculus under gexpectation, Stoch. Proc. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
    [3] S. G. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A-Math., 52 (2009), 1391–1411. https://doi.org/10.1007/s11425-009-0121-8 doi: 10.1007/s11425-009-0121-8
    [4] L. X. Zhang, Strong limit theorems for extended independent random variables and extended negatively dependent random variables under sub-linear expectations, Acta. Math. Sci., 42 (2016), 467–490. https://doi.org/10.1007/s10473-022-0203-z doi: 10.1007/s10473-022-0203-z
    [5] L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2
    [6] L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
    [7] P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, PNAS, 33 (1947), 25–31. https://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25
    [8] Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin., 16 (1988), 177–201.
    [9] D. Qiu, P. Chen, Complete moment convergence for i.i.d.random variables, Stat. Probabil. Lett., 91 (2014), 76–82. https://doi.org/10.1016/j.spl.2014.04.001 doi: 10.1016/j.spl.2014.04.001
    [10] W. Yang, S. Hu, Complete moment convergence of pairwise NQD random variables, Stochastics, 87 (2015), 199–208. http://doi.org/10.1080/17442508.2014.939975 doi: 10.1080/17442508.2014.939975
    [11] M. Song, Q. Zhu, Complete moment convergence of extended negatively dependent random variables, J. Inequal. Appl., 2020 (2020), 150. https://doi.org/10.1186/s13660-020-02416-7 doi: 10.1186/s13660-020-02416-7
    [12] S. Li, Q. Wu, Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations, AIMS Mathematics, 6 (2021), 12166–12181. https://doi.org/10.3934/math.2021706 doi: 10.3934/math.2021706
    [13] D. Lu, Y. Meng, Complete and complete integral convergence for arrays of row wise widely negative dependent random variables under the sub-linear expectations, Commun. Stat.-Theory. M., 51 (2022), 2994–3007. https://doi.org/10.1080/03610926.2020.1786585 doi: 10.1080/03610926.2020.1786585
    [14] X. Chen, Q. Wu. Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations, AIMS Mathematics, 7 (2022), 9694–9715. https://doi.org/10.3934/math.2022540 doi: 10.3934/math.2022540
    [15] F. X. Feng, X. Zeng, A complete convergence theorem of the maximum of partial sums under the sub-linear expectations, Filomat, 36 (2022), 5725–5735. https://doi.org/10.2298/FIL2217725F doi: 10.2298/FIL2217725F
    [16] M. Xu, K. Cheng, W. Yu, Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations, AMIS Mathematics, 7 (2022), 19998–20019. https://doi.org/10.3934/math.20221094 doi: 10.3934/math.20221094
    [17] M. Xu, K. Chng, Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations, AMIS Mathematics, 8 (2023), 8504–8521. https://doi.org/10.3934/math.2023428 doi: 10.3934/math.2023428
    [18] Y. Wu, Y. Wang, On the complete moment convergence for weighted sums of weakly dependent random variables, J. Math. Inequal., 15 (2021), 277–291. https://doi.org/10.7153/jmi-2021-15-21 doi: 10.7153/jmi-2021-15-21
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1190) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog