Research article Special Issues

Pythagorean fuzzy incidence graphs with application in illegal wildlife trade

  • Received: 18 April 2023 Revised: 18 June 2023 Accepted: 26 June 2023 Published: 10 July 2023
  • MSC : 03E72, 05C72

  • Chemical engineers can model numerous interactions in a process using incidence graphs. They are used to methodically map out a whole network of interconnected processes and controllers to describe each component's impact on the others. It makes it easier to visualize potential process paths or a series of impacts. A Pythagorean fuzzy set is an effective tool to overcome ambiguity and vagueness. In this paper, we introduce the concept of Pythagorean fuzzy incidence graphs. We discuss the incidence path and characterize the strongest incidence path in Pythagorean fuzzy incidence graphs. Furthermore, we propose the idea of Pythagorean fuzzy incidence cycles and Pythagorean fuzzy incidence trees in Pythagorean fuzzy incidence graphs and give some essential results. We illustrate the notions of Pythagorean fuzzy incidence cut vertices, Pythagorean fuzzy incidence bridges, and Pythagorean fuzzy incidence cut pairs. We also establish some results about Pythagorean fuzzy incidence cut pairs. Moreover, we study the types of incidence pairs and determine some crucial results concerning strong incidence pairs in the Pythagorean fuzzy incidence graph. We also obtain the characterization of Pythagorean fuzzy incidence cut pairs using $ \alpha $-strong incidence pairs and find the relation between Pythagorean fuzzy incidence trees and $ \alpha $-strong incidence pairs. Finally, we provide the application of Pythagorean fuzzy incidence graphs in the illegal wildlife trade.

    Citation: Ayesha Shareef, Uzma Ahmad, Saba Siddique, Mohammed M. Ali Al-Shamiri. Pythagorean fuzzy incidence graphs with application in illegal wildlife trade[J]. AIMS Mathematics, 2023, 8(9): 21793-21827. doi: 10.3934/math.20231112

    Related Papers:

  • Chemical engineers can model numerous interactions in a process using incidence graphs. They are used to methodically map out a whole network of interconnected processes and controllers to describe each component's impact on the others. It makes it easier to visualize potential process paths or a series of impacts. A Pythagorean fuzzy set is an effective tool to overcome ambiguity and vagueness. In this paper, we introduce the concept of Pythagorean fuzzy incidence graphs. We discuss the incidence path and characterize the strongest incidence path in Pythagorean fuzzy incidence graphs. Furthermore, we propose the idea of Pythagorean fuzzy incidence cycles and Pythagorean fuzzy incidence trees in Pythagorean fuzzy incidence graphs and give some essential results. We illustrate the notions of Pythagorean fuzzy incidence cut vertices, Pythagorean fuzzy incidence bridges, and Pythagorean fuzzy incidence cut pairs. We also establish some results about Pythagorean fuzzy incidence cut pairs. Moreover, we study the types of incidence pairs and determine some crucial results concerning strong incidence pairs in the Pythagorean fuzzy incidence graph. We also obtain the characterization of Pythagorean fuzzy incidence cut pairs using $ \alpha $-strong incidence pairs and find the relation between Pythagorean fuzzy incidence trees and $ \alpha $-strong incidence pairs. Finally, we provide the application of Pythagorean fuzzy incidence graphs in the illegal wildlife trade.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] Z. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433. http://dx.doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
    [4] R. R. Yager, Pythagorean fuzzy subsets, In: Joint IFS World Congress and NAFIPS Annual Meeting, Edmonton, Canada, 2013, 57–61. http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [5] R. R. Yager, Pythagorean membership grades in multiple criteria decision-making, IEEE T. Fuzzy Syst., 22 (2014), 458–465. http://dx.doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [6] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision-making, Int. J. Intell. Syst., 28 (2013), 436–452. http://dx.doi.org/10.1002/int.21584 doi: 10.1002/int.21584
    [7] A. Kaufmann, Introduction a la Theorie des Sour-Ensembles Flous, Masson et Cie, Paris, France, 1973. https://doi.org/10.1080/03081077508960278
    [8] A. Rosenfeld, Fuzzy graphs, Fuzzy sets and their applications to cognitive and decision processes, Academic press, New York, 1975, 77–95. https://doi.org/10.1016/B978-0-12-775260-0.50008-6
    [9] S. Mathew, M. Sunitha, Node connectivity and arc connectivity in fuzzy graphs, Inform. Sci., 180 (2010), 519–531. http://dx.doi.org/10.1016/j.ins.2009.10.006 doi: 10.1016/j.ins.2009.10.006
    [10] D. Chakraborty, N. K. Mahapatra, Notes on intuitionistic fuzzy graph, Int. J. Adv. Math., 2020 (2020), 9–23.
    [11] J. Bera, K. C. Das, S. Samanta, J. G. Lee, Connectivity status of intuitionistic fuzzy graph and its application to merging of banks, Mathematics, 11 (2023), 1949. http://dx.doi.org/10.3390/math11081949 doi: 10.3390/math11081949
    [12] S. Naz, S. Ashraf, M. Akram, A novel approach to decision-making with Pythagorean fuzzy information, Mathematics, 6 (2018), 95. https://doi.org/10.3390/math6060095 doi: 10.3390/math6060095
    [13] M. Akram, S. Naz, Energy of Pythagorean fuzzy graphs with applications, Mathematics, 6 (2018), 136. https://doi.org/10.3390/math6080136 doi: 10.3390/math6080136
    [14] M. Akram, A. Habib, F. Ilyas, J. M. Dar, Specific types of Pythagorean fuzzy graphs and application to decision-making, Math. Comput. Appl., 23 (2018), 42. https://doi.org/10.3390/mca23030042 doi: 10.3390/mca23030042
    [15] M. Akram, J. M. Dar, S. Naz, Certain graphs under Pythagorean fuzzy environment, Complex Intell. Syst., 5 (2019), 127–144. http://dx.doi.org/10.1007/s40747-018-0089-5 doi: 10.1007/s40747-018-0089-5
    [16] M. Akram, A. Habib, B. Davvaz, Direct sum of $n$ Pythagorean fuzzy graphs with application to group decision-making, J. Mult.-Valued Log. S., 33 (2019), 75–115.
    [17] M. Akram, J. M. Dar, A. Farooq, Planar graphs under Pythagorean fuzzy environment, Mathematics, 6 (2018), 278. https://doi.org/10.3390/math6120278 doi: 10.3390/math6120278
    [18] M. Akram, S. Siddique, M. G. Alharbi, Clustering algorithm with strength of connectedness for m-polar fuzzy network models, Math. Biosci. Eng., 19 (2022), 420–455. http://dx.doi.org/10.3934/mbe.2022021 doi: 10.3934/mbe.2022021
    [19] M. Akram, S. Siddique, J. C. R. Alcantud, Connectivity indices of m-polar fuzzy network model, with an application to a product manufacturing problem, Artif. Intell. Rev., 56 (2023), 7795–7838. https://doi.org/10.1007/s10462-022-10360-9 doi: 10.1007/s10462-022-10360-9
    [20] U. Ahmad, I. Nawaz, Directed rough fuzzy graph with application to trade networking, Comput. Appl. Math., 41 (2022), 1–26. http://dx.doi.org/10.1007/s40314-022-02073-0 doi: 10.1007/s40314-022-02073-0
    [21] U. Ahmad, I. Nawaz, Wiener index of a directed rough fuzzy graph and application to human trafficking, J. Intell. Fuzzy Syst., 44 (2023), 1479–1495. http://dx.doi.org/10.3233/JIFS-221627 doi: 10.3233/JIFS-221627
    [22] U. Ahmad, T. Batool, Domination in rough fuzzy digraphs with application, Soft Comput., 27 (2023), 2425–2442. http://dx.doi.org/10.1007/s00500-022-07795-1 doi: 10.1007/s00500-022-07795-1
    [23] M. Akram, S. Shahzadi, A. Rasool, M. Sarwar, Decision-making methods based on fuzzy soft competition hypergraphs, Complex Intell. Syst., 8 (2022), 2325–2348. https://doi.org/10.1007/s40747-022-00646-4 doi: 10.1007/s40747-022-00646-4
    [24] M. Sarwar, M. Akram, S. Shahzadi, Bipolar fuzzy soft information applied to hypergraphs, Soft Comput., 25 (2021), 3417–3439. https://doi.org/10.1007/s00500-021-05610-x doi: 10.1007/s00500-021-05610-x
    [25] S. Shahzadi, M. Sarwar, M. Akram, Decision-making approach with fuzzy type-$2$ soft graphs, J. Math., 2020 (2020). https://doi.org/10.1155/2020/8872446 doi: 10.1155/2020/8872446
    [26] S. Shahzadi, A. Rasool, M. Sarwar, M. Akram, A framework of decision making based on bipolar fuzzy competition hypergraphs, J. Intell. Fuzzy Syst., 41 (2021), 1319–1339. http://dx.doi.org/10.3233/JIFS-210216 doi: 10.3233/JIFS-210216
    [27] T. Dinesh, A study on graph structures, incidence algebras and their fuzzy analogues, Ph.D. Thesis, Kannur University, Kerala, India, 2012.
    [28] T. Dinesh, Fuzzy incidence graph–-An introduction, Adv. Fuzzy Set. Syst., 21 (2016), 33–48. http://dx.doi.org/10.17654/FS021010033 doi: 10.17654/FS021010033
    [29] J. N. Mordeson, Fuzzy incidence graphs, Adv. Fuzzy Set. Syst., 21 (2016), 121–131. https://doi.org/10.17654/FS021020121 doi: 10.17654/FS021020121
    [30] D. S. Malik, S. Mathew, J. N. Mordeson, Fuzzy incidence graphs: Applications to human trafficking, Inform. Sci., 447 (2018), 244–255. https://doi.org/10.1016/j.ins.2018.03.022 doi: 10.1016/j.ins.2018.03.022
    [31] S. Mathew, J. N. Mordeson, Connectivity concepts in fuzzy incidence graphs, Inform. Sci., 382–383 (2017), 326–333. https://doi.org/10.1016/j.ins.2016.12.020 doi: 10.1016/j.ins.2016.12.020
    [32] J. Fang, I. Nazeer, T. Rashid, J. B. Liu, Connectivity and Wiener index of fuzzy incidence graphs, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/6682966 doi: 10.1155/2021/6682966
    [33] I. Nazeer, T. Rashid, J. L. G. Guirao, Domination of fuzzy incidence graphs with the algorithm and application for the selection of a medical lab, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/6682502 doi: 10.1155/2021/6682502
    [34] I. Nazeer, T. Rashid, M. T. Hussain, Cyclic connectivity index of fuzzy incidence graphs with applications in the highway system of different cities to minimize road accidents and in a network of different computers, PLOS One, 16 (2021). https://doi.org/10.1371/journal.pone.0257642 doi: 10.1371/journal.pone.0257642
    [35] J. N. Mordeson, D. S. Malik, S. Mathew, Fuzzy incidence graphs in Fuzzy graph theory with applications to human trafficking, Springer, New York, NY, US, 2018, 87–137. http://dx.doi.org/10.1007/978-3-319-76454-2_3
    [36] I. Nazeer, T. Rashid, A. Keikha, An application of product of intuitionistic fuzzy incidence graphs in textile industry, Complexity, 2021 (2021), 1–16. https://doi.org/10.1155/2021/5541125 doi: 10.1155/2021/5541125
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1480) PDF downloads(111) Cited by(2)

Article outline

Figures and Tables

Figures(14)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog