Research article

$ \phi $-pluriharmonicity in quasi bi-slant conformal $ \xi^\perp $-submersions: a comprehensive study

  • Received: 29 May 2023 Revised: 20 June 2023 Accepted: 28 June 2023 Published: 10 July 2023
  • MSC : 53C43, 53D10

  • This paper delves into quasi bi-slant conformal $ \xi^{\perp} $-submersions from Sasakian manifolds onto Riemannian manifolds, which is a generalization of quasi hemi-slant conformal submersions. Our research involves studying the integrability conditions for distributions, taking into account the geometry of their leaves. We also provide decomposition theorems for quasi bi-slant conformal $ \xi^{\perp} $-submersions, and showcase non-trivial examples to illustrate our findings. Furthermore, we analyze the $ \varphi $-pluriharmonicity of such submersions.

    Citation: Ibrahim Al-Dayel, Mohammad Shuaib, Sharief Deshmukh, Tanveer Fatima. $ \phi $-pluriharmonicity in quasi bi-slant conformal $ \xi^\perp $-submersions: a comprehensive study[J]. AIMS Mathematics, 2023, 8(9): 21746-21768. doi: 10.3934/math.20231109

    Related Papers:

  • This paper delves into quasi bi-slant conformal $ \xi^{\perp} $-submersions from Sasakian manifolds onto Riemannian manifolds, which is a generalization of quasi hemi-slant conformal submersions. Our research involves studying the integrability conditions for distributions, taking into account the geometry of their leaves. We also provide decomposition theorems for quasi bi-slant conformal $ \xi^{\perp} $-submersions, and showcase non-trivial examples to illustrate our findings. Furthermore, we analyze the $ \varphi $-pluriharmonicity of such submersions.



    加载中


    [1] M. Akyol, Y. Gunduzalp, Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4 (2016), 15–27. http://dx.doi.org/10.56947/gjom.v4i3.70 doi: 10.56947/gjom.v4i3.70
    [2] M. Akyol, Conformal semi-slant submersions, Int. J. Geom. Methods M., 14 (2017), 1750114. http://dx.doi.org/10.1142/S0219887817501146 doi: 10.1142/S0219887817501146
    [3] M. Akyol, B. Sahin, Conformal slant submersions, Hacet. J. Math. Stat., 48 (2019), 28–44. http://dx.doi.org/10.15672/HJMS.2017.506 doi: 10.15672/HJMS.2017.506
    [4] M. Akyol, B. Sahin, Conformal anti-invariant submersions from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 43–70. http://dx.doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20
    [5] M. Akyol, B. Sahin, Conformal semi-invariant submersions, Commun. Contemp. Math., 19 (2017), 1650011. http://dx.doi.org/10.1142/S0219199716500115 doi: 10.1142/S0219199716500115
    [6] M. Akyol, B. Sahin, Conformal anti-invariant submersion from almost Hermitian manifolds, Turk. J. Math., 40 (2016), 43–70. http://dx.doi.org/10.3906/mat-1408-20 doi: 10.3906/mat-1408-20
    [7] P. Baird, J. Wood, Harmonic morphisms between Riemannian manifolds, Oxford: Clarendon Press, 2003. http://dx.doi.org/10.1093/acprof:oso/9780198503620.001.0001
    [8] J. Bourguignon, H. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys., 79 (1981), 189–230. http://dx.doi.org/10.1007/BF01942061 doi: 10.1007/BF01942061
    [9] D. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palermo, 34 (1985), 89–104. http://dx.doi.org/10.1007/BF02844887 doi: 10.1007/BF02844887
    [10] J. Cabrerizo, A. Carriazo, L. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (2000), 125–138. http://dx.doi.org/10.1017/S0017089500010156 doi: 10.1017/S0017089500010156
    [11] I. Erken, C. Murathan, On slant Riemannian submersions for cosymplectic manifolds, Bull. Korean Math. Soc., 51 (2014), 1749–1771. http://dx.doi.org/10.4134/BKMS.2014.51.6.1749 doi: 10.4134/BKMS.2014.51.6.1749
    [12] M. Falcitelli, S. Ianus, A. Pastore, Riemannian submersions and related topics, New Jersey: World Scientific, 2004. http://dx.doi.org/10.1142/5568
    [13] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Annales de l'Institut Fourier, 28 (1978), 107–144. http://dx.doi.org/10.5802/aif.691 doi: 10.5802/aif.691
    [14] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715–737.
    [15] S. Gudmundsson, The geometry of harmonic morphisms, Ph. D Thesis, University of Leeds, 1992.
    [16] S. Gudmundsson, J. Wood, Harmonic morphisms between almost Hermitian manifolds, Boll. Unione Mat. Ital., 11 (1997), 185–197.
    [17] Y. Gunduzalp, Semi-slant submersions from almost product Riemannian manifolds, Demonstr. Math., 49 (2016), 345–356. http://dx.doi.org/10.1515/dema-2016-0029 doi: 10.1515/dema-2016-0029
    [18] S. Ianus, M. Visinescu, Space-time compaction and Riemannian submersions, In: The mathematical heritage of C. F. Gauss, New Jersey: World Scientific, 1991, 358–371. http://dx.doi.org/10.1142/9789814503457_0026
    [19] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215–229. http://dx.doi.org/10.1215/kjm/1250522428 doi: 10.1215/kjm/1250522428
    [20] S. Kumar, S. Kumar, S. Pandey, R. Prasad, Conformal hemi-slant submersions from almost hermitian manifolds, Commun. Korean Math. Soc., 35 (2020), 999–1018. http://dx.doi.org/10.4134/CKMS.c190448 doi: 10.4134/CKMS.c190448
    [21] M. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918–6929. http://dx.doi.org/10.1063/1.1290381 doi: 10.1063/1.1290381
    [22] Y. Ohnita, On pluriharmonicity of stable harmonic maps, J. Lond. Math. Soc., 2 (1987), 563–568. http://dx.doi.org/10.1112/jlms/s2-35.3.563 doi: 10.1112/jlms/s2-35.3.563
    [23] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–469. http://dx.doi.org/10.1307/mmj/1028999604 doi: 10.1307/mmj/1028999604
    [24] K. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., 50 (2013), 951–962. http://dx.doi.org/10.4134/BKMS.2013.50.3.951 doi: 10.4134/BKMS.2013.50.3.951
    [25] R. Prasad, S. Shukla, S. Kumar, On quasi bi-slant submersions, Mediterr. J. Math., 16 (2019), 155. http://dx.doi.org/10.1007/s00009-019-1434-7 doi: 10.1007/s00009-019-1434-7
    [26] R. Prasad, M. Akyol, P. Singh, S. Kumar, On quasi bi-slant submersions from Kenmotsu manifolds onto any Riemannian manifolds, J. Math. Ext., 16 (2022), 1–25. http://dx.doi.org/10.30495/JME.2022.1588 doi: 10.30495/JME.2022.1588
    [27] R. Prasad, S. Kumar, Conformal anti-invariant submersions from nearly Kaehler Manifolds, Palestine Journal of Mathematics, 8 (2019), 234–247.
    [28] R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, 48 (1993), 15–25. http://dx.doi.org/10.1007/BF01265674 doi: 10.1007/BF01265674
    [29] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Centr. Eur. J. Math., 8 (2010), 437–447. http://dx.doi.org/10.2478/s11533-010-0023-6 doi: 10.2478/s11533-010-0023-6
    [30] B. Sahin, Semi-invariant Riemannian submersions from almost Hermitian manifolds, Can. Math. Bull., 56 (2013), 173–183. http://dx.doi.org/10.4153/CMB-2011-144-8 doi: 10.4153/CMB-2011-144-8
    [31] B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 54 (2011), 93–105.
    [32] M. Shuaib, T. Fatima, A note on conformal hemi-slant submersions, Afr. Mat., 34 (2023), 4. http://dx.doi.org/10.1007/s13370-022-01036-2 doi: 10.1007/s13370-022-01036-2
    [33] H. Tastan, B. Sahin, S. Yanan, Hemi-slant submersions, Mediterr. J. Math., 13 (2016), 2171–2184. http://dx.doi.org/10.1007/s00009-015-0602-7 doi: 10.1007/s00009-015-0602-7
    [34] B. Watson, Almost Hermitian submersions, J. Differential Geom., 11 (1976), 147–165. http://dx.doi.org/10.4310/jdg/1214433303 doi: 10.4310/jdg/1214433303
    [35] B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Global analysis-analysis on manifolds: dedicated to Marston Morse, Leipzig: B. G. Teubner, 1983, 324–349.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1085) PDF downloads(69) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog