Research article

Discontinuous solutions of delay fractional integral equation via measures of noncompactness

  • Received: 23 February 2023 Revised: 18 April 2023 Accepted: 01 July 2023 Published: 03 July 2023
  • MSC : 47N20, 47H30, 45G10

  • This article considers the existence and the uniqueness of monotonic solutions of a delay functional integral equation of fractional order in the weighted Lebesgue space $ L_1^N({\mathbb{R}}^+) $. Our analysis uses a suitable measure of noncompactness, a modified version of Darbo's fixed point theorem, and fractional calculus in the mentioned space. An illustrated example to show the applicability and significance of our outcomes is included.

    Citation: Mohamed M. A. Metwali, Shami A. M. Alsallami. Discontinuous solutions of delay fractional integral equation via measures of noncompactness[J]. AIMS Mathematics, 2023, 8(9): 21055-21068. doi: 10.3934/math.20231072

    Related Papers:

  • This article considers the existence and the uniqueness of monotonic solutions of a delay functional integral equation of fractional order in the weighted Lebesgue space $ L_1^N({\mathbb{R}}^+) $. Our analysis uses a suitable measure of noncompactness, a modified version of Darbo's fixed point theorem, and fractional calculus in the mentioned space. An illustrated example to show the applicability and significance of our outcomes is included.



    加载中


    [1] J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, New York, Basel, 1980.
    [2] A. Alsaadi, M. Cichoń, M. M. A. Metwali, Integrable solutions for Gripenberg-type equations with m-product of fractional operators and applications to initial value problems, Mathematics, 10 (2022), 1172. https://doi.org/10.3390/math10071172 doi: 10.3390/math10071172
    [3] M. M. A. Metwali, Solvability in weighted $L_1$-spaces for the $m$-product of integral equations and model of the dynamics of the capillary rise, J. Math. Anal. Appl., 515 (2022), 126461. https://doi.org/10.1016/j.jmaa.2022.126461 doi: 10.1016/j.jmaa.2022.126461
    [4] M. Metwali, Solvability of Gripenberg's equations of fractional order with perturbation term in weighted $L_p$-spaces on ${\mathbb{R}}^+$, Turkish J. Math., 46 (2022), 481–498. https://doi.org/10.3906/mat-2106-84 doi: 10.3906/mat-2106-84
    [5] R. Gorenflo, S. Vessela, Abel integral equations, Springer, Berlin-Heidelberg, 1991.
    [6] J. Banaś, Z. Knap, Measures of weak noncompactness and nonlinear integral equations of convolution type, J. Math. Anal. Appl., 146 (1990), 353–362. https://doi.org/10.1016/0022-247X(90)90307-2 doi: 10.1016/0022-247X(90)90307-2
    [7] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Aust. Math. Soc., 46 (1989), 61–68. https://doi.org/10.1017/S1446788700030378 doi: 10.1017/S1446788700030378
    [8] M. Younis, D. Singh, L. Chen, M. Metwali, A study on the solutions of notable engineering models, Math. Model. Anal., 27 (2022), 492–509.
    [9] M. Asaduzzaman, M. Z. Ali, Existence of multiple positive solutions to the Caputo-type nonlinear fractional differential equation with integral boundary value conditions, Fixed Point Theory, 23 (2022), 127–142. https://doi.org/10.24193/fpt-ro.2022.1.08 doi: 10.24193/fpt-ro.2022.1.08
    [10] X. Li, B. Wu, Approximate analytical solutions of nonlocal fractional boundary value problems, Appl. Math. Model., 39 (2015), 1717–1724. http://dx.doi.org/10.1016/j.apm.2014.09.035 doi: 10.1016/j.apm.2014.09.035
    [11] X. Y. Li, B. Y. Wu, Iterative reproducing kernel method for nonlinear variable order space fractional diffusion equations, Int. J. Comput. Math., 95 (2017), 1210–1221. https://doi.org/10.1080/00207160.2017.1398325 doi: 10.1080/00207160.2017.1398325
    [12] M. M. A. Metwali, K. Cichoń, On solutions of some delay Volterra integral problems on a half-line, Nonlinear Anal. Model. Control, 26 (2021), 661–677.
    [13] E. A. Butcher, H. Ma, E. Bueler, V. Averina, Z. Szabo, Stability of linear time-periodic delay-differential equations via Chebyshev polynomials, Inter. J. Numer. Meth. Eng., 59 (2004), 895–922. https://doi.org/10.1002/nme.894 doi: 10.1002/nme.894
    [14] P. Darania, P. Pishbinx, High-order collocation methods for nonlinear delay integral equation, J. Comput. Appl. Math., 326 (2017), 284–295. https://doi.org/10.1016/j.cam.2017.05.026 doi: 10.1016/j.cam.2017.05.026
    [15] K. L. Cooke, J. L. Kaplan, A periodic threshold theorem for epidemics and population growth, Math. Biosci., 31 (1976), 87–104. https://doi.org/10.1016/0025-5564(76)90042-0 doi: 10.1016/0025-5564(76)90042-0
    [16] M. Dobriţoiu, I. A. Rus, M. A. Şerban, An integral equation arising from infectious diseases, via Picard operator, Studia Univ. Babeş-Bolyai Math., LII (2007), 81–94.
    [17] R. Precup, E. Kirr, Analysis of a nonlinear integral equation modelling infection diseases, Proceedings of the International Conference, University of the West, Timişoara, 1997,178–195.
    [18] H. L. Smith, On periodic solutions of a delay integral equations modeling epidemics, J. Math. Biol., 4 (1977), 69–80. https://doi.org/10.1007/BF00276353 doi: 10.1007/BF00276353
    [19] T. A. Burton, R. H. Hering, Neutral integral equations of retarded type, Nonlinear Anal., 41 (2000), 545–572. https://doi.org/10.1016/S0362-546X(98)00297-1 doi: 10.1016/S0362-546X(98)00297-1
    [20] T. A. Burton, Krasnoselskii's inversion principle and fixed points, Nonlinear Anal., 30 (1997), 3975–3986. https://doi.org/10.1016/S0362-546X(96)00219-2 doi: 10.1016/S0362-546X(96)00219-2
    [21] B. Cahlon, D. Schmidt, Stability criteria for certain delay integral equations of Volterra type, J. Comput. Appl. Math., 84 (1997), 161–188. https://doi.org/10.1016/S0377-0427(97)00115-5 doi: 10.1016/S0377-0427(97)00115-5
    [22] E. Messina, E. Russo, A.Vecchio, A stable numerical method for Volterra integral equations with discontinuous kernel, J. Math. Anal. Appl., 337 (2008), 1383–1393. https://doi.org/10.1016/j.jmaa.2007.04.059 doi: 10.1016/j.jmaa.2007.04.059
    [23] H. Brunner, W. Zhang, Primary discontinuities in solutions for delay integro-differential equations, Methods Appl. Anal., 6 (1999), 525–534.
    [24] J. Appell, P. P. Zabrejko, Nonlinear superposition operators, Vol. 95, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511897450
    [25] M. M. A. Metwali, On a class of quadratic Urysohn–Hammerstein integral equations of mixed type and initial value problem of fractional order, Mediterr. J. Math., 13 (2016), 2691–2707. https://doi.org/10.1007/s00009-015-0647-7 doi: 10.1007/s00009-015-0647-7
    [26] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivative, Theory and Applications, Gordon and Breach Science Publishers, 1993.
    [27] M. Väth, Volterra and integral equations of vector functions, Marcel Dekker, Inc., New York, Basel, 2000.
    [28] M. Väth, Continuity of single and multivalued superposition operators in generalized ideal spaces of measurable functions, Nonlinear Funct. Anal. Appl., 11 (2006), 607–646.
    [29] M. Cichoń, M. Metwali, On a fixed point theorem for the product of operators, J. Fixed Point Theory Appl., 18 (2016), 753–770. https://doi.org/10.1007/s11784-016-0319-7 doi: 10.1007/s11784-016-0319-7
    [30] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Math. Sci. R. S. Roum., 21 (1977), 259–262.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1058) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog