Research article

Product of H-Toeplitz operator and Toeplitz operator on the Bergman space

  • Received: 08 May 2023 Revised: 12 June 2023 Accepted: 13 June 2023 Published: 29 June 2023
  • MSC : 47B35, 31A05

  • In this paper, we characterize when the product of two H-Toeplitz operators to be another H-Toeplitz with one general and another quasihomogeneous symbols. Also, we describe the product of H-Toeplitz operator and Toeplitz operator to be another H-Toeplitz with certain harmonic symbols.

    Citation: Qian Ding, Yong Chen. Product of H-Toeplitz operator and Toeplitz operator on the Bergman space[J]. AIMS Mathematics, 2023, 8(9): 20790-20801. doi: 10.3934/math.20231059

    Related Papers:

  • In this paper, we characterize when the product of two H-Toeplitz operators to be another H-Toeplitz with one general and another quasihomogeneous symbols. Also, we describe the product of H-Toeplitz operator and Toeplitz operator to be another H-Toeplitz with certain harmonic symbols.



    加载中


    [1] L. Brown, P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213 (1964), 89–102. https://doi.org/10.1515/crll.1964.213.89 doi: 10.1515/crll.1964.213.89
    [2] D. Zheng, Hankel operators and Toeplitz operators on the Bergman space, J. Funct. Anal., 83 (1989), 98–120. https://doi.org/10.1016/0022-1236(89)90032-3 doi: 10.1016/0022-1236(89)90032-3
    [3] P. Ahern, Ž. Čučković, A theorem of Brown-Halmos type for Bergman space Toeplitz operators, J. Funct. Anal., 187 (2001), 200–210. https://doi.org/10.1006/jfan.2001.3811 doi: 10.1006/jfan.2001.3811
    [4] Ž. Čučković, N. V. Rao, Mellin transform, monomial symbols and commuting Toeplitz operators, J. Funct. Anal., 154 (1998), 195–214. https://doi.org/10.1006/jfan.1997.3204 doi: 10.1006/jfan.1997.3204
    [5] I. Louhichi, L. Zakariasy, On Toeplitz operators with quasihomogeneous symbols, Arch. Math., 85 (2005), 248–257. https://doi.org/10.1007/s00013-005-1198-0 doi: 10.1007/s00013-005-1198-0
    [6] I. Louhichi, E. Strouse, L. Zakariasy, Products of Toeplitz operators on the Bergman space, Integr. Equ. Oper. Theory, 54 (2006), 525–539. https://doi.org/10.1007/s00020-005-1369-1 doi: 10.1007/s00020-005-1369-1
    [7] S. C. Arora, S. Palial, On H-Toeplitz operators, Bull. Pure. Appl. Math., 1 (2007), 141–154.
    [8] A. Gupta, S. K. Singh, Slant H-Toeplitz operators on the Hardy space, J. Korean Math. Soc., 56 (2019), 703–721. https://doi.org/10.48550/arXiv.1801.04209 doi: 10.48550/arXiv.1801.04209
    [9] A. Gupta, S. K. Singh, H-Toeplitz operators on Bergman space, Bull. Korean Math., 58 (2021), 327–347. https://doi.org/10.4134/BKMS.B200260 doi: 10.4134/BKMS.B200260
    [10] J. Liang, L. Lai, Y. Zhao, Y. Chen, Commuting H-Toeplitz operators with quasihomogeneous symbol, AIMS Math., 7 (2022), 13927–13944. https://doi.org/10.3934/math.2022442 doi: 10.3934/math.2022442
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1162) PDF downloads(84) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog