Research article Special Issues

Supporting vectors vs. principal components

  • Received: 10 July 2022 Revised: 29 September 2022 Accepted: 08 October 2022 Published: 26 October 2022
  • MSC : 51F30, 54E35, 54E45

  • Let $ T:X\to Y $ be a bounded linear operator between Banach spaces $ X, Y $. A vector $ x_0\in {\mathsf{S}}_X $ in the unit sphere $ {\mathsf{S}}_X $ of $ X $ is called a supporting vector of $ T $ provided that $ \|T(x_0)\| = \sup\{\|T(x)\|:\|x\| = 1\} = \|T\| $. Since matrices induce linear operators between finite-dimensional Hilbert spaces, we can consider their supporting vectors. In this manuscript, we unveil the relationship between the principal components of a matrix and its supporting vectors. Applications of our results to real-life problems are provided.

    Citation: Almudena P. Márquez, Francisco Javier García-Pacheco, Míriam Mengibar-Rodríguez, Alberto Sánchez-Alzola. Supporting vectors vs. principal components[J]. AIMS Mathematics, 2023, 8(1): 1937-1958. doi: 10.3934/math.2023100

    Related Papers:

  • Let $ T:X\to Y $ be a bounded linear operator between Banach spaces $ X, Y $. A vector $ x_0\in {\mathsf{S}}_X $ in the unit sphere $ {\mathsf{S}}_X $ of $ X $ is called a supporting vector of $ T $ provided that $ \|T(x_0)\| = \sup\{\|T(x)\|:\|x\| = 1\} = \|T\| $. Since matrices induce linear operators between finite-dimensional Hilbert spaces, we can consider their supporting vectors. In this manuscript, we unveil the relationship between the principal components of a matrix and its supporting vectors. Applications of our results to real-life problems are provided.



    加载中


    [1] E. Bishop, R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc., 67 (1961), 97–98. https://doi.org/10.1090/S0002-9904-1961-10514-4 doi: 10.1090/S0002-9904-1961-10514-4
    [2] E. Bishop, R. R. Phelps, The support functionals of a convex set, In: Proceedings of Symposia in Pure Mathematics, Vol. VII, Providence, R.I.: Amer. Math. Soc., 1963, 27–35.
    [3] T. Bouwmans, S. Javed, H. Zhang, Z. Lin, R. Otazo, On the applications of robust PCA in image and video processing, Proc. IEEE, 106 (2018), 1427–1457. https://doi.org/10.1109/JPROC.2018.2853589 doi: 10.1109/JPROC.2018.2853589
    [4] C. Cobos-Sánchez, F. J. Garcia-Pacheco, J. M. Guerrero Rodriguez, J. R. Hill, An inverse boundary element method computational framework for designing optimal TMS coils, Eng. Anal. Bound. Elem., 88 (2018), 156–169. https://doi.org/10.1016/j.enganabound.2017.11.002 doi: 10.1016/j.enganabound.2017.11.002
    [5] C. Cobos-Sánchez, F. J. García-Pacheco, S. Moreno-Pulido, S. Sáez-Martínez, Supporting vectors of continuous linear operators, Ann. Funct. Anal., 8 (2017), 520–530. https://doi.org/10.1215/20088752-2017-0016 doi: 10.1215/20088752-2017-0016
    [6] C. Cobos-Sánchez, J. A. Vilchez-Membrilla, A. Campos-Jiménez, F. J. García-Pacheco, Pareto optimality for multioptimization of continuous linear operators, Symmetry, 13 (2021), 661. https://doi.org/10.3390/sym13040661 doi: 10.3390/sym13040661
    [7] C. Cobos-Sánchez, M. R. Cabello, Á. Q. Olozábal, M. F. Pantoja, Design of TMS coils with reduced lorentz forces: application to concurrent TMS-fMRI, J. Neural Eng., 17 (2020), 016056. https://doi.org/10.1088/1741-2552/ab4ba2 doi: 10.1088/1741-2552/ab4ba2
    [8] C. Cobos-Sánchez, J. J. J. García, M. R. Cabello, M. F. Pantoja, Design of coils for lateralized TMS on mice, J. Neural Eng., 17 (2020), 036007. https://doi.org/10.1088/1741-2552/ab89fe doi: 10.1088/1741-2552/ab89fe
    [9] C. Cobos-Sánchez, F. J. Garcia-Pacheco, J. M. Guerrero-Rodriguez, L. Garcia-Barrachina, Solving an IBEM with supporting vector analysis to design quiet TMS coils, Eng. Anal. Bound. Elem., 117 (2020), 1–12. https://doi.org/10.1016/j.enganabound.2020.04.013 doi: 10.1016/j.enganabound.2020.04.013
    [10] C. Cobos-Sánchez, J. M. Guerrero-Rodriguez, Á. Q. Olozábal, D. Blanco-Navarro, Novel TMS coils designed using an inverse boundary element method, Phys. Med. Biol., 62 (2016), 73–90. https://doi.org/10.1088/1361-6560/62/1/73 doi: 10.1088/1361-6560/62/1/73
    [11] C. M. Epstein, E. Wassermann, U. Ziemann, Oxford Handbook of Transcranial Stimulation, New York: Oxford University Press, 2008. https://doi.org/10.1093/oxfordhb/9780198568926.001.0001
    [12] J. Fan, Q. Sun, W.-X. Zhou, Z. Zhu, Principal component analysis for big data, Wiley StatsRef: Statistics Reference Online, in press. https://doi.org/10.1002/9781118445112.stat08122
    [13] F. J. García-Pacheco, E. Naranjo-Guerra, Supporting vectors of continuous linear projections, International Journal of Functional Analysis, Operator Theory and Applications, 9 (2017), 85–95.
    [14] F. J. García-Pacheco, Lineability of the set of supporting vectors, RACSAM, 115 (2021), 41, https://doi.org/10.1007/s13398-020-00981-6 doi: 10.1007/s13398-020-00981-6
    [15] F. J. Garcia-Pacheco, C. Cobos-Sánchez, S. Moreno-Pulido, A. Sanchez-Alzola, Exact solutions to $\max_{\Vert x\Vert = 1}\sum^\infty_{i = 1}\Vert T_i(x)\Vert^2$ with applications to Physics, Bioengineering and Statistics, Commun. Nonlinear Sci. Numer. Simul., 82 (2020), 105054. https://doi.org/10.1016/j.cnsns.2019.105054 doi: 10.1016/j.cnsns.2019.105054
    [16] F.-K. Garsiya-Pacheko, The cardinality of the set $\Lambda$ determines the geometry of the spaces $B_{\ell_\infty(\Lambda)}$ and $B_{\ell_\infty(\Lambda)^*}$, (Russian), Funktsional. Anal. i Prilozhen., 52 (2018), 62–71. https://doi.org/10.4213/faa3534 doi: 10.4213/faa3534
    [17] Instituto de Estadística y Cartografía de Andalucía. Available from: https://www.juntadeandalucia.es/institutodeestadisticaycartografia.
    [18] R. C. James, Characterizations of reflexivity, Stud. Math., 23 (1964), 205–216. https://doi.org/10.4064/sm-23-3-205-216 doi: 10.4064/sm-23-3-205-216
    [19] J. Lindenstrauss, On operators which attain their norm, Israel J. Math., 1 (1963), 139–148. https://doi.org/10.1007/BF02759700 doi: 10.1007/BF02759700
    [20] L. Marin, H. Power, R. W. Bowtell, C. Cobos-Sánchez, A. A. Becker, P. Glover, et al., Numerical solution of an inverse problem in magnetic resonance imaging using a regularized higher-order boundary element method, In: Boundary elements and other mesh reduction methods XXIX, Southampton: WIT Press, 2007,323–332. https://doi.org/10.2495/BE070311
    [21] L. Marin, H. Power, R. W. Bowtell, C. Cobos-Sánchez, A. A. Becker, P. Glover, et al., Boundary element method for an inverse problem in magnetic resonance imaging gradient coils, CMES Comput. Model. Eng. Sci., 23 (2008), 149–173. https://doi.org/10.3970/cmes.2008.023.149 doi: 10.3970/cmes.2008.023.149
    [22] S. Moreno-Pulido, F. J. Garcia-Pacheco, C. Cobos-Sánchez, A. Sanchez-Alzola, Exact solutions to the maxmin problem $ \max \|ax\|$ subject to $\|bx\| \leq 1$, Mathematics, 8 (2020), 85. http://doi.org/10.3390/math8010085 doi: 10.3390/math8010085
    [23] A. Sánchez-Alzola, F. J. García-Pacheco, E. Naranjo-Guerra, S. Moreno-Pulido, Supporting vectors for the $\ell_1$-norm and the $\ell_\infty$-norm and an application, Math. Sci., 15 (2021), 173–187. https://doi.org/10.1007/s40096-021-00400-w doi: 10.1007/s40096-021-00400-w
    [24] L. Surhone, M. Timpledon, S. Marseken, Principal component analysis: Karhunen-Loève Theorem, Harold Hotelling, Karl Pearson, Exploratory Data Analysis, Eigendecomposition of a Matrix, Covariance Matrix, Singular Value Decomposition, Factor Analysis, Betascript Publishing, 2010.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1192) PDF downloads(49) Cited by(1)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog