Research article

Some properties of a new subclass of tilted star-like functions with respect to symmetric conjugate points

  • Received: 25 June 2022 Revised: 28 September 2022 Accepted: 13 October 2022 Published: 26 October 2022
  • MSC : 30C45, 30C50

  • In this paper, we introduced a new subclass $ S_{SC}^*\left({\alpha, \delta, A, B} \right) $ of tilted star-like functions with respect to symmetric conjugate points in an open unit disk and obtained some of its basic properties. The estimation of the Taylor-Maclaurin coefficients, the Hankel determinant, Fekete-Szegö inequality, and distortion and growth bounds for functions in this new subclass were investigated. A number of new or known results were presented to follow upon specializing in the parameters involved in our main results.

    Citation: Daud Mohamad, Nur Hazwani Aqilah Abdul Wahid, Nurfatin Nabilah Md Fauzi. Some properties of a new subclass of tilted star-like functions with respect to symmetric conjugate points[J]. AIMS Mathematics, 2023, 8(1): 1889-1900. doi: 10.3934/math.2023097

    Related Papers:

  • In this paper, we introduced a new subclass $ S_{SC}^*\left({\alpha, \delta, A, B} \right) $ of tilted star-like functions with respect to symmetric conjugate points in an open unit disk and obtained some of its basic properties. The estimation of the Taylor-Maclaurin coefficients, the Hankel determinant, Fekete-Szegö inequality, and distortion and growth bounds for functions in this new subclass were investigated. A number of new or known results were presented to follow upon specializing in the parameters involved in our main results.



    加载中


    [1] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326
    [2] R. M. El-Ashwah, D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2 (1987), 85–100.
    [3] S. A. Halim, Functions starlike with respect to other points, Int. J. Math. Math. Sci., 14 (1991), 620597. https://doi.org/10.1155/s0161171291000613 doi: 10.1155/s0161171291000613
    [4] L. C. Ping, A. Janteng, Subclass of starlike functions with respect to symmetric conjugate points, International Journal of Algebra, 5 (2011), 755–762.
    [5] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072 doi: 10.2969/jmsj/01110072
    [6] T. N. Shanmugam, C. Ramachandram, V. Ravichandran, Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc., 43 (2006), 589–598. http://dx.doi.org/10.4134/BKMS.2006.43.3.589 doi: 10.4134/BKMS.2006.43.3.589
    [7] S. A. F. M. Dahhar, A. Janteng, A subclass of starlike functions with respect to conjugate points, Int. Math. Forum., 4 (2009), 1373–1377.
    [8] Q. H. Xu, G. P. Wu, Coefficient estimate for a subclass of univalent functions with respect to symmetric point, European Journal of Pure and Applied Mathematics, 3 (2010), 1055–1061.
    [9] G. Singh, G. Singh, Coefficient inequality for subclasses of starlike functions with respect to conjugate points, International Journal of Modern Mathematical Sciences, 8 (2013), 48–56.
    [10] G. Singh, Hankel determinant for analytic functions with respect to other points, Eng. Math. Lett., 2 (2013), 115–123.
    [11] A. Yahya, S. C. Soh, D. Mohamad, Coefficient bound of a generalised close-to-convex function, International Journal of Pure and Applied Mathematics, 83 (2013), 287–293.
    [12] A. Yahya, S. C. Soh, D. Mohamad, Some extremal properties of a generalised close-to-convex function, Int. J. Math. Anal., 8 (2014), 1931–1936. http://doi.org/10.12988/ijma.2014.44109 doi: 10.12988/ijma.2014.44109
    [13] N. H. A. A. Wahid, D. Mohamad, S. C. Soh, On a subclass of tilted starlike functions with respect to conjugate points, Discovering Mathematics, 37 (2015), 1–6.
    [14] D. Vamshee Krishna, B. Venkateswarlu, T. RamReddy, Third Hankel determinant for starlike and convex functions with respect to symmetric points, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 70 (2016), 37–45. http://doi.org/10.17951/a.2016.70.1.37 doi: 10.17951/a.2016.70.1.37
    [15] A. K. Mishra, J. Prajapat, S. Maharana, Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Mathematics, 3 (2016), 1160557. http://doi.org/10.1080/23311835.2016.1160557 doi: 10.1080/23311835.2016.1160557
    [16] N. H. A. A. Wahid, D. Mohamad, Bounds on Hankel determinant for starlike functions with respect to conjugate points, J. Math. Comput. Sci., 11 (2021), 3347–3360. https://doi.org/10.28919/jmcs/5722 doi: 10.28919/jmcs/5722
    [17] N. H. A. A. Wahid, D. Mohamad, Toeplitz determinant for a subclass of tilted starlike functions with respect to conjugate points, Sains Malays., 50 (2021), 3745–3751. http://doi.org/10.17576/jsm-2021-5012-23 doi: 10.17576/jsm-2021-5012-23
    [18] P. Zaprawa, Initial logarithmic coefficients for functions starlike with respect to symmetric points, Bol. Soc. Mat. Mex., 27 (2021), 62. https://doi.org/10.1007/s40590-021-00370-y doi: 10.1007/s40590-021-00370-y
    [19] H. Tang, K. R. Karthikeyan, G. Murugusundaramoorthy, Certain subclass of analytic functions with respect to symmetric points associated with conic region, AIMS Mathematics, 6 (2021), 12863–12877. http://doi.org/10.3934/math.2021742 doi: 10.3934/math.2021742
    [20] K. Trạbka-Wiẹcław, On coefficient problems for functions connected with the sine function, Symmetry, 13 (2021), 1179. http://doi.org/10.3390/sym13071179 doi: 10.3390/sym13071179
    [21] D. Mohamad, N. H. A. A. Wahid, Zalcman coefficient functional for tilted starlike functions with respect to conjugate points, J. Math. Comput. Sci., 29 (2023), 40–51. http://doi.org/10.22436/jmcs.029.01.04 doi: 10.22436/jmcs.029.01.04
    [22] R. M. Goel, B. C. Mehrok, A subclass of univalent functions, J. Aust. Math. Soc., 35 (1983), 1–17. http://doi.org/10.1017/S1446788700024733 doi: 10.1017/S1446788700024733
    [23] I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369–379. http://doi.org/10.1016/j.jmaa.2015.10.050 doi: 10.1016/j.jmaa.2015.10.050
    [24] P. L. Duren, Univalent functions, New York: Springer, 1983.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1065) PDF downloads(66) Cited by(1)

Article outline

Figures and Tables

Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog