In this note, by using basic properties of the recently introduced concepts of generalized metric spaces, new conditions for the existence of a fixed point for weakly type contractive operator which sends a closed subset into the ambient space under consideration are examined. Our obtained result extends and unifies its corresponding ideas in metric and modular spaces. A comparative non-trivial example is provided to show the novelty and preeminence of our proposed notion.
Citation: Mohammed Shehu Shagari, Faryad Ali, Trad Alotaibi, Shazia Kanwal, Akbar Azam. A fixed point result of weakly contractive operators in generalized metric spaces[J]. AIMS Mathematics, 2022, 7(9): 17603-17611. doi: 10.3934/math.2022969
In this note, by using basic properties of the recently introduced concepts of generalized metric spaces, new conditions for the existence of a fixed point for weakly type contractive operator which sends a closed subset into the ambient space under consideration are examined. Our obtained result extends and unifies its corresponding ideas in metric and modular spaces. A comparative non-trivial example is provided to show the novelty and preeminence of our proposed notion.
[1] | T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, Math. Comp. Model., 54 (2011), 2923–2927. https://doi.org/10.1016/j.mcm.2011.07.013 doi: 10.1016/j.mcm.2011.07.013 |
[2] | Y. I. Alberand, S. Guerre-Delabrere, Principle of weakly contractive maps in Hilbert spaces, In: I. Gohberg, Y. Lyubich, New results in operator theory and its applications, Operator Theory: Advances and Applications, Basel, 98 (1997), 7–22. https://doi.org/10.1007/978-3-0348-8910-0_2 |
[3] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[4] | A. Betiuk-Pilarska, T. B. Domınguez, Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices, Pure Appl. Func. Anal., 1 (2016), 343–359. |
[5] | F. S. de Blasi, J. Myjak, S. Reich, A. J. Zaslavski, Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-Valued Anal., 17 (2009), 97–112. https://doi.org/10.1007/s11228-009-0104-5 doi: 10.1007/s11228-009-0104-5 |
[6] | P. Chakraborty, B. S. Choudhury, Locally weak version of the contraction mapping principle, Math. Notes, 109 (2021), 859–866. https://doi.org/10.1134/S0001434621050199 doi: 10.1134/S0001434621050199 |
[7] | W. Chistyakov, Modular metric spaces generated by $F$-modulars, Folia Math., 14 (2008), 3–25. |
[8] | V. V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal.: Theory Methods Appl., 72 (2010), 1–14. https://doi.org/10.1016/j.na.2009.04.057 doi: 10.1016/j.na.2009.04.057 |
[9] | P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metricspaces, Fixed Point Theory Appl., 2008 (2008), 406368. https://doi.org/10.1155/2008/406368 doi: 10.1155/2008/406368 |
[10] | A. Gholidahaneh, S. Sedghi, V. Parvaneh, Some fixed point results for Perov-Ćirić-Prešić-type $F$-contractions with application, J. Funct. Spaces, 2020 (2020), 1464125. https://doi.org/10.1155/2020/1464125 doi: 10.1155/2020/1464125 |
[11] | A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic, M. de la Sen, The Meir-Keeler type contractions in extended modular b-metric spaces with an application, AIMS Math., 6 (2021), 1781–1799. https://doi.org/10.3934/math.2021107 doi: 10.3934/math.2021107 |
[12] | M. A. Khamsi, W. M. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal.: Theory Methods Appl., 14 (1990), 935–953. https://doi.org/10.1016/0362-546X(90)90111-S doi: 10.1016/0362-546X(90)90111-S |
[13] | S. Koshi, T. Shimogaki, On $F$-norms of quasi-modular spaces, J. Fac. Sci., Hokkaido Univ. Ser. I, Math., 15 (1961), 202–218. |
[14] | W. M. Kozlowski, An introduction to fixed point theory in modular function spaces, In: S. Almezel, Q. Ansari, M. Khamsi, Topics in fixed point theory, Springer, 2014,159–222. https://doi.org/10.1007/978-3-319-01586-6_5 |
[15] | R. Kubota, W. Takahashi, Y. Takeuchi, Extensions of Browder's demiclosedness principle and Reich's lemma and their applications, Pure Appl. Func. Anal., 1 (2016), 63–84. |
[16] | Y. Lim, Solving the nonlinear matrix equation $X = Q+ \sum\limits_{i = 1}^{m}M^*_iX^{\delta_i}M^*_i$ via acontraction principle, Linear Algebra Appl., 430 (2009), 1380–1383. https://doi.org/10.1016/j.laa.2008.10.034 doi: 10.1016/j.laa.2008.10.034 |
[17] | S. Mazur, W. Orlicz, On some classes of linear spaces, Stud. Math., 17 (1958), 97–119. |
[18] | Z. D. Mitrovic, S. Radenovic, H. Aydi, A. A. Altasan, C. Ozel, On two new approaches in modular spaces, Ita. J. Pure Appl. Math., 41 (2019), 679–690. |
[19] | S. S. Mohammed, A. Azam, Integral type contractions of soft set-valued maps with application to neutral differential equation, AIMS Math., 5 (2019), 342–358. https://doi.org/10.3934/math.2020023 doi: 10.3934/math.2020023 |
[20] | S. S. Mohammed, S. Rashid, K. M. Abualnaja, A. Monairah, On non-linear fuzzy set-valued $\Theta$-contraction with applications, AIMS Math., 6 (2021), 10431–10448. https://doi.org/10.3934/math.2021605 doi: 10.3934/math.2021605 |
[21] | J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, 1983. https://doi.org/10.1007/BFb0072210 |
[22] | H. Nakano, Modulared semi-ordered linear spaces, Maruzen Company, 1950. |
[23] | S. Reich, A. J. Zaslavski, On a class of generalized nonexpansive mappings, Mathematics, 8 (2020), 1085. https://doi.org/10.3390/math8071085 doi: 10.3390/math8071085 |
[24] | S. Reich, J. Z. Alexander, A fixed point result in generalized metric spaces, J. Anal., 2022. https://doi.org/10.1007/s41478-022-00412-2 doi: 10.1007/s41478-022-00412-2 |
[25] | B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal.: Theory Methods Appl., 47 (2001), 2683–2693. https://doi.org/10.1016/S0362-546X(01)00388-1 doi: 10.1016/S0362-546X(01)00388-1 |
[26] | A. A. Taleb, E. Hanebaly, A fixed point theorem and its applications to integral equations in modular function spaces, Proc. Amer. Math. Soc., 128 (1999), 419–426. https://doi.org/10.1090/S0002-9939-99-05546-X doi: 10.1090/S0002-9939-99-05546-X |
[27] | Z. Xue, G. Lv, Remarks of fixed point for $(\psi, \phi)$-weakly contractive mappings, J. Math., 2021 (2021), 5561165. https://doi.org/10.1155/2021/5561165 doi: 10.1155/2021/5561165 |
[28] | S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90 (1959), 291–311. https://doi.org/10.2307/1993206 doi: 10.2307/1993206 |