Research article Special Issues

Solving a fractional differential equation via $ {\theta } $-contractions in ℜ-complete metric spaces

  • Received: 06 June 2022 Revised: 06 July 2022 Accepted: 06 July 2022 Published: 15 July 2022
  • MSC : 47H10, 54H25

  • In this manuscript, we introduce the notion of ℜ$ \alpha $-$ \theta $-contractions and prove some fixed-point theorems in the sense of ℜ-complete metric spaces. These results generalize existing ones in the literature. Also, we provide some illustrative non-trivial examples and applications to a non-linear fractional differential equation.

    Citation: Khalil Javed, Muhammad Arshad, Amani S. Baazeem, Nabil Mlaiki. Solving a fractional differential equation via $ {\theta } $-contractions in ℜ-complete metric spaces[J]. AIMS Mathematics, 2022, 7(9): 16869-16888. doi: 10.3934/math.2022926

    Related Papers:

  • In this manuscript, we introduce the notion of ℜ$ \alpha $-$ \theta $-contractions and prove some fixed-point theorems in the sense of ℜ-complete metric spaces. These results generalize existing ones in the literature. Also, we provide some illustrative non-trivial examples and applications to a non-linear fractional differential equation.



    加载中


    [1] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
    [2] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publicationes Math. Debrecon, 57 (2000), 31-37.
    [3] H. Baghani, M. Ramezani, A fixed point theorem for a new class of set-valued mappings in $\mathfrak{R} $-complete (not necessarily complete) metric spaces, Filomat, 31 (2017), 3875-3884. https://doi.org/10.2298/FIL1712875B doi: 10.2298/FIL1712875B
    [4] J. Ahmad, A. E. Al-Mazrooei, Y. Cho, Y. Yang, Fixed point results for generalized Θ-contractions, J. Nonlinear Sci. Appl., 10 (2017), 2350-2358. http://dx.doi.org/10.22436/jnsa.010.05.07 doi: 10.22436/jnsa.010.05.07
    [5] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive mappings, Nonlinear Anal., 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [6] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations integrales, Fund. Math., 3 (1922), 133-181.
    [7] R. Caccioppoli, Un teorema generale sull' esistenza di elementi uniti in una trasformazione funzionale, Rend. Accad. Naz. Lincei, 11 (1930), 794-799.
    [8] M. Arshad, E. Meer, E. Karapinar, Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces, J. Inequal. Appl., 2016 (2016), 63. https://doi.org/10.1186/s13660-016-1010-7 doi: 10.1186/s13660-016-1010-7
    [9] P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math., 9 (2002), 29-33.
    [10] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014 (2014), 458098. https://doi.org/10.1155/2014/458098 doi: 10.1155/2014/458098
    [11] C. R. Diminnie, A new orthogonality relation for normed linear spaces, Math. Nachr., 114 (1983), 197-203. https://doi.org/10.1002/mana.19831140115 doi: 10.1002/mana.19831140115
    [12] L. J. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2
    [13] A. Ahmad, A. S. Al-Rawashdeh, A. Azam, Fixed point results for {α, ξ}-expansive locally contractive mappings, J. Inequal. Appl., 2014 (2014), 364. https://doi.org/10.1186/1029-242X-2014-364 doi: 10.1186/1029-242X-2014-364
    [14] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed-point theorems for generalized F-contractions in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 80. https://doi.org/10.1186/s13663-015-0333-2 doi: 10.1186/s13663-015-0333-2
    [15] K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed-point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021), 6663707. https://doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707
    [16] M. Jleli, E. Karapinar, B. Samet, Further generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 439. https://doi.org/10.1186/1029-242X-2014-439 doi: 10.1186/1029-242X-2014-439
    [17] D. Baleanu, S. Rezapour, H. Mohammadi, Some existence results on nonlinear fractional differential equations, Philos. Trans. R. Soc. A, 371 (2013), 1-7. https://doi.org/10.1098/rsta.2012.0144 doi: 10.1098/rsta.2012.0144
    [18] W. Sudsutad, J. Tariboon, Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions, Adv. Differ. Equations, 2012 (2012), 93. https://doi.org/10.1186/1687-1847-2012-93 doi: 10.1186/1687-1847-2012-93
    [19] S. Khalehoghli, H. Rahimi, M. E. Gordji, Fixed point theorem in $\mathfrak{R} $-metric spaces with applications, AIMS Math., 5 (2020), 3125-3137. http://dx.doi.org/10.3934/math.2020201 doi: 10.3934/math.2020201
    [20] M. U. Ali, Y. Guo, F. Uddin, H. Aydi, K. Javed, Z. Ma, On partial metric spaces and related fixed-point results with applications, J. Funct. Spaces, 2020 (2020), 6671828. https://doi.org/10.1155/2020/6671828 doi: 10.1155/2020/6671828
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1334) PDF downloads(111) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog