Research article

Fixed point approach to solve fractional differential equations in $ S^{JS} $-metric spaces

  • Received: 03 May 2022 Revised: 18 June 2022 Accepted: 21 June 2022 Published: 24 June 2022
  • MSC : 47H10, 54H25

  • This study aims to establish a new fixed point theorem in the framework of $ S^{JS} $-metric spaces, recently introduced by Beg et al. We propose different principles of contraction using various techniques. The theorems obtained represent a new framework for other future work in the considered space. Also, we provide two applications of our results to linear system of equations and the following fractional differential equation

    $ \mathcal{(P)}:\left\{ \begin{array}{ccl} D^{\lambda}x(t) & = & f(t, x(t)) = Fx(t) \mbox{ if } t\in I_0 = (0, T] \\ x(0) & = & x(T) = r \ \end{array} \right\}. $

    These applications show the effectiveness of our approach as a powerful tool for solving several types of differential equations.

    Citation: Doaa Rizk, Nizar Souayah, Nabil Mlaiki. Fixed point approach to solve fractional differential equations in $ S^{JS} $-metric spaces[J]. AIMS Mathematics, 2022, 7(8): 15680-15692. doi: 10.3934/math.2022858

    Related Papers:

  • This study aims to establish a new fixed point theorem in the framework of $ S^{JS} $-metric spaces, recently introduced by Beg et al. We propose different principles of contraction using various techniques. The theorems obtained represent a new framework for other future work in the considered space. Also, we provide two applications of our results to linear system of equations and the following fractional differential equation

    $ \mathcal{(P)}:\left\{ \begin{array}{ccl} D^{\lambda}x(t) & = & f(t, x(t)) = Fx(t) \mbox{ if } t\in I_0 = (0, T] \\ x(0) & = & x(T) = r \ \end{array} \right\}. $

    These applications show the effectiveness of our approach as a powerful tool for solving several types of differential equations.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations intgrales, Fund. Math., 3 (1922), 133–181.
    [2] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vestn., 64 (2012), 258–266.
    [3] N. M. Mlaiki, $\alpha$-$\psi$-contractive mapping on S-metric space, Math. Sci. Lett., 4 (2015), 9–12. http://doi.org/10.12785/msl/040103 doi: 10.12785/msl/040103
    [4] N. Mlaiki, Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4 (2014), 509–524.
    [5] N. Souayah, N. Mlaiki, A fixed point in $S_b$-metric spaces, J. Math. Comput. Sci., 16 (2016), 131–139. http://doi.org/10.22436/jmcs.016.02.01 doi: 10.22436/jmcs.016.02.01
    [6] N. Souayah, A fixed point in partial $S_b$-metric spaces, An. Şt. Univ. Ovidius Constanţa, 24 (2016), 351–362. http://doi.org/10.1515/auom-2016-006 doi: 10.1515/auom-2016-006
    [7] N. Souayah, N. Mlaiki, A coincident point principle for two weakly compatible mappings in partial $S$-metric spaces, JNSA, 9 (2016), 2217–2223. http://doi.org/10.22436/jnsa.009.05.25 doi: 10.22436/jnsa.009.05.25
    [8] H. Aydi, W. Shatanawi, C. Vetro, On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62 (2011), 4222–4229. https://doi.org/10.1016/j.camwa.2011.10.007 doi: 10.1016/j.camwa.2011.10.007
    [9] N. Tahat, H. Aydi, E. Karapinar, W. Shatanawi, Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl., 2012 (2012), 48. https://doi.org/10.1186/1687-1812-2012-48 doi: 10.1186/1687-1812-2012-48
    [10] W. Shatanawi, N Mlaiki, D. Rizk, E. Onunwor, Fredholm-type integral equation in controlled metric-like spaces, Adv. Differ. Equ., 2021 (2021), 358. https://doi.org/10.1186/s13662-021-03516-4 doi: 10.1186/s13662-021-03516-4
    [11] H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for $(\Psi, \Phi)$-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl., 63 (2012), 298–309. https://doi.org/10.1016/j.camwa.2011.11.022 doi: 10.1016/j.camwa.2011.11.022
    [12] V. Parvaneh, N. Hussain, Z. Kadelburg, Generalized Wardowski type fixed point theorems via $\alpha$-admissible FG-contractions in b-metric spaces, Acta Math. Sci., 36 (2016), 1445–1456. https://doi.org/10.1016/S0252-9602(16)30080-7 doi: 10.1016/S0252-9602(16)30080-7
    [13] N. Hussain, J. R. Roshan, V. Parvaneh, A. Latif, A unification of $G$–metric, partial metric, and $b-$metric spaces, Abstr. Appl. Anal., 2014 (2014), 180698. https://doi.org/10.1155/2014/180698 doi: 10.1155/2014/180698
    [14] J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenovic, Common fixed point theorems for three maps in discontinuous $G_b$ metric spaces, Acta Math. Sci., 34 (2014), 1643–1654. https://doi.org/10.1016/S0252-9602(14)60110-7 doi: 10.1016/S0252-9602(14)60110-7
    [15] Z. Mustafa, V. Parvaneh, J. R. Roshan, Z. Kadelburg, $b_{2}-$Metric spaces and some fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 144. https://doi.org/10.1186/1687-1812-2014-144 doi: 10.1186/1687-1812-2014-144
    [16] K. Roy, S. Panja, M. Saha, V. Parvaneh, An extended-metric-type space and related fixed point theorems with an application to nonlinear integral equations, Adv. Math. Phys., 2020 (2020), 8868043. https://doi.org/10.1155/2020/8868043 doi: 10.1155/2020/8868043
    [17] M. M. Rezaei, S. Sedghi, V. Parvaneh, Application of some fixed-point theorems in orthogonal extended $S$-metric spaces, J. Math., 2021 (2021), 3040469. https://doi.org/10.1155/2021/3040469 doi: 10.1155/2021/3040469
    [18] A. Karami, S. Sedghi, V. Parvaneh, Sequential extended-metric spaces and relevant fixed point results with application to nonlinear integral equations, Adv. Math. Phys., 2021 (2021), 9910861. https://doi.org/10.1155/2021/9910861 doi: 10.1155/2021/9910861
    [19] N. Souayah, Fractional differential equation in partially ordered controlled metric spaces, U. P. B. Sci. Bull.-Ser. A, 84 (2022), 81–88.
    [20] I. Beg, K. Roy, M. Saha, $S^JS$- metric and topological spaces, J. Math. Ext., 15 (2021), 1–16. https://doi.org/10.30495/JME.2021.1589 doi: 10.30495/JME.2021.1589
    [21] K. Roy, M. Saha, I. Beg, Fixed point of contractive mappings of integral type over an $S^JS$-metric space, Tamkang J. Math., 52 (2021), 267–280. https://doi.org/10.5556/j.tkjm.52.2021.3298 doi: 10.5556/j.tkjm.52.2021.3298
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1460) PDF downloads(65) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog