Research article Special Issues

Theoretical and numerical analysis of solutions of some systems of nonlinear difference equations

  • Received: 19 April 2022 Revised: 05 June 2022 Accepted: 09 June 2022 Published: 22 June 2022
  • MSC : 39A10

  • In this paper, we obtain the form of the solutions of the following rational systems of difference equations

    $ \begin{equation*} x_{n+1} = \dfrac{y_{n-1}z_{n}}{z_{n}\pm x_{n-2}}, \;y_{n+1} = \dfrac{z_{n-1}x_{n} }{x_{n}\pm y_{n-2}}, \ z_{n+1} = \dfrac{x_{n-1}y_{n}}{y_{n}\pm z_{n-2}}, \end{equation*} $

    with initial values are non-zero real numbers.

    Citation: E. M. Elsayed, Q. Din, N. A. Bukhary. Theoretical and numerical analysis of solutions of some systems of nonlinear difference equations[J]. AIMS Mathematics, 2022, 7(8): 15532-15549. doi: 10.3934/math.2022851

    Related Papers:

  • In this paper, we obtain the form of the solutions of the following rational systems of difference equations

    $ \begin{equation*} x_{n+1} = \dfrac{y_{n-1}z_{n}}{z_{n}\pm x_{n-2}}, \;y_{n+1} = \dfrac{z_{n-1}x_{n} }{x_{n}\pm y_{n-2}}, \ z_{n+1} = \dfrac{x_{n-1}y_{n}}{y_{n}\pm z_{n-2}}, \end{equation*} $

    with initial values are non-zero real numbers.



    加载中


    [1] R. Abo-Zeid, On the solutions of a fourth order difference equation, Univ. J. Math. Appl., 4 (2021), 76–81. https://doi.org/10.1017/S0040298221000693 doi: 10.1017/S0040298221000693
    [2] Y. Akrour, N. Touafek, Y. Halim, On a system of difference equations of third order solved in closed form, J. Innov. Appl. Math. Comput. Sci., 1 (2021), 1–15. https://doi.org/10.48550/arXiv.1910.14365 doi: 10.48550/arXiv.1910.14365
    [3] M. B. Almatrafi, Analysis of solutions of some discrete systems of rational difference equations, J. Comput. Anal. Appl., 29 (2021), 355–368.
    [4] A. M. Alotaibi, M. A. El-Moneam, On the dynamics of the nonlinear rational difference equation ${ x_{n+1}} = \frac{{\alpha {x_{n-m}}}\ \ \ +\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}\ \ \ { x_{n-l}}\ \ \ \ \left({{x_{n-k}}\ \ \ \ +{x_{n-l}}}\ \ \ \ \ \ \right) }}$, AIMS Math., 7 (2022), 7374–7384. https://doi.org/10.3934/math.2022411 doi: 10.3934/math.2022411
    [5] N. Battaloglu, C. Cinar, I. Yalçınkaya, The dynamics of the difference equation, ARS Combinatoria, 97 (2010), 281–288.
    [6] C. Cinar, I. Yalcinkaya, R. Karatas, On the positive solutions of the difference equation system $x_{n+1} = m/y_{n}, \; y_{n+1} = py_{n}/x_{n-1}y_{n-1}$, J. Inst. Math. Comp. Sci., 18 (2005), 135–136.
    [7] C. Cinar, I. Yalçinkaya, On the positive solutions of the difference equation system $x_{n+1} = 1/z_{n}, \; y_{n+1} = y_{n}/x_{n-1}y_{n-1}, \; z_{n+1} = 1/x_{n-1}$, J. Inst. Math. Comp. Sci., 18 (2005), 91–93.
    [8] S. E. Das, M. Bayram, On a system of rational difference equations, World Appl. Sci. J., 10 (2010), 1306–1312.
    [9] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the solutions of a class of difference equations systems, Demonstr. Math., 41 (2008), 109–122. https://doi.org/10.1515/dema-2008-0111 doi: 10.1515/dema-2008-0111
    [10] E. M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., 2011 (2011). https://doi.org/10.1155/2011/982309 doi: 10.1155/2011/982309
    [11] E. M. Elsayed, Solutions of rational difference system of order two, Math. Comput. Model., 55 (2012), 378–384. https://doi.org/10.1016/j.mcm.2011.08.012 doi: 10.1016/j.mcm.2011.08.012
    [12] E. M. Elsayed, M. M. El-Dessoky, A. Alotaibi, On the solutions of a general system of difference equations, Discrete Dyn. Nat. Soc., 2012 (2012). https://doi.org/10.1155/2012/892571 doi: 10.1155/2012/892571
    [13] E. M. Elsayed, A. Alshareef, Qualitative behavior of a system of second order difference equations, Eur. J. Math. Appl., 1 (2021), 1–11.
    [14] E. M. Elsayed, B. S. Alofi, A. Q. Khan, Qualitative behavior of solutions of tenth-order recursive sequence equation, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/5242325 doi: 10.1155/2022/5242325
    [15] E. M. Elsayed, F. Alzahrani, Periodicity and solutions of some rational difference equations systems, J. Appl. Anal. Comput., 9 (2019), 2358–2380. https://doi.org/10.11948/20190100 doi: 10.11948/20190100
    [16] T. F. Ibrahim, A. Q. Khan, A. Ibrahim, Qualitative behavior of a nonlinear generalized recursive sequence with delay, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/6162320 doi: 10.1155/2021/6162320
    [17] T. F. Ibrahim, A. Q. Khan, Forms of solutions for some two-dimensional systems of rational partial recursion equations, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/9966197 doi: 10.1155/2021/9966197
    [18] M. Kara, Y. Yazlik, On a solvable three-dimensional system of difference equations, Filomat, 34 (2020), 1167–1186. https://doi.org/10.2298/FIL2004167K doi: 10.2298/FIL2004167K
    [19] K. Y. Liu, Z. J. Zhao, X. R. Li, P. Li, More on three-dimensional systems of rational difference equations, Discrete Dyn. Nat. Soc., 2011 (2011). https://doi.org/10.1155/2011/178483 doi: 10.1155/2011/178483
    [20] A. Khaliq, M. Shoaib, Dynamics of three-dimensional system of second order rational difference equations, Electron. J. Math. Anal. Appl., 9 (2021), 308–319.
    [21] A. Khelifa, Y. Halim, M. Berkal, Solutions of a system of two higher-order difference equations in terms of Lucas sequence, Univ. J. Math. Appl., 2 (2019), 202–211. https://doi.org/10.32323/ujma.610399 doi: 10.32323/ujma.610399
    [22] A. Khelifa, Y. Halim, Global behavior of P-dimensional difference equations system, Electron. Res. Arch., 29 (2021), 3121–3139. https://doi.org/10.3934/era.2021029 doi: 10.3934/era.2021029
    [23] A. S. Kurbanli, C. Cinar, I. Yalçınkaya, On the behavior of positive solutions of the system of rational difference equations, Math. Comput. Model., 53 (2011), 1261–1267. https://doi.org/10.1016/j.mcm.2010.12.009 doi: 10.1016/j.mcm.2010.12.009
    [24] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations, Adv. Differ. Equ., 2011 (2011), 40. https://doi.org/10.1186/1687-1847-2011-40 doi: 10.1186/1687-1847-2011-40
    [25] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations: $x_{n+1} = x_{n-1}/x_{n-1}y_{n}-1, \; y_{n+1} = y_{n-1}/y_{n-1}x_{n}-1, z_{n+1} = z_{n-1}/z_{n-1}y_{n}-1$, Discrete Dyn. Nat. Soc., 2011 (2011). https://doi.org/10.1186/1687-1847-2011-40 doi: 10.1186/1687-1847-2011-40
    [26] A. Kurbanli, C. Cinar, M. Erdoğan, On the behavior of solutions of the system of rational difference equations $x_{n+1} = \dfrac{ x_{n-1}}{x_{n-1}y_{n}-1}, \; y_{n+1} = \dfrac{y_{n-1}}{y_{n-1}x_{n}-1}, z_{n+1} = \dfrac{x_{n}}{z_{n-1}y_{n}}$, Appl. Math., 2 (2011), 1031–1038.
    [27] B. Oğul, D. Şimşek, On the recursive sequence $ x_{n+1} = x_{n-14}/1+x_{n-2}x_{n-5}x_{n-8}x_{n-11}$, MANAS J. Eng., 8 (2020), 155–163. https://hdl.handle.net/20.500.13091/1672
    [28] A. Y. Ozban, On the system of rational difference equations $ x_{n+1} = a/y_{n-3}, \; y_{n+1} = by_{n-3}/x_{n-q}y_{n-q}$, Appl. Math. Comput., 188 (2007), 833–837. https://doi.org/10.1016/j.amc.2006.10.034 doi: 10.1016/j.amc.2006.10.034
    [29] D. Tollu, İ. Yalçınkaya, H. Ahmad, S. Yao, A detailed study on a solvable system related to the linear fractional difference equation, Math. Biosci. Eng., 18 (2021), 5392–5408. https://doi.org/10.3934/mbe.2021273 doi: 10.3934/mbe.2021273
    [30] N. Touafek, E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Model., 55 (2012), 1987–1997. https://doi.org/10.1016/j.mcm.2011.11.058 doi: 10.1016/j.mcm.2011.11.058
    [31] N. Touafek, D. Tollu, Y. Akrour, On a general homogeneous three-dimensional system of difference equations, Electron. Res. Arch., 29 (2021), 2841–2876. https://doi.org/10.3934/era.2021017 doi: 10.3934/era.2021017
    [32] I. Yalcinkaya, On the global asymptotic stability of a second-order system of difference equations, Discrete Dyn. Nat. Soc., 2008 (2008). https://doi.org/10.1155/2008/860152 doi: 10.1155/2008/860152
    [33] I. Yalçınkaya, On the global asymptotic behavior of a system of two nonlinear difference equations, ARS Combinatoria, 95 (2010), 151–159. https://doi.org/10.1016/j.ygeno.2009.12.003 doi: 10.1016/j.ygeno.2009.12.003
    [34] I. Yalçınkaya, C. Cinar, D. Simsek, Global asymptotic stability of a system of difference equations, Appl. Anal., 87 (2008), 689–699. https://doi.org/10.1097/PHM.0b013e31817e4b84 doi: 10.1097/PHM.0b013e31817e4b84
    [35] I. Yalcinkaya, C. Cinar, Global asymptotic stability of two nonlinear difference equations, Fasciculi Math., 43 (2010), 171–180.
    [36] I. Yalcinkaya, C. Cinar, M. Atalay, On the solutions of systems of difference equations, Adv. Differ. Equ., 2008 (2008). https://doi.org/10.1155/2008/143943 doi: 10.1155/2008/143943
    [37] X. Yang, Y. Liu, S. Bai, On the system of high order rational difference equations $x_{n} = a/y_{n-p}, \; y_{n} = by_{n-p}/x_{n-q}y_{n-q}$, Appl. Math. Comput., 171 (2005), 853–856. https://doi.org/10.1016/j.amc.2005.01.092 doi: 10.1016/j.amc.2005.01.092
    [38] Y. Yazlik, D. T. Tollu, N. Taskara, On the behavior of solutions for some systems of difference equations, J. Comput. Anal. Appl., 18 (2015), 166–178.
    [39] Y. Zhang, X. Yang, G. M. Megson, D. J. Evans, On the system of rational difference equations, Appl. Math. Comput., 176 (2006), 403–408. https://doi.org/10.1016/j.amc.2005.09.039 doi: 10.1016/j.amc.2005.09.039
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1511) PDF downloads(80) Cited by(3)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog