Research article Special Issues

Numerical study of non-linear waves for one-dimensional planar, cylindrical and spherical flow using B-spline finite element method

  • Received: 20 May 2022 Revised: 08 June 2022 Accepted: 14 June 2022 Published: 10 June 2022
  • MSC : 58B05, 55U40, 34A34, 35C10, 34A45

  • In a recent study, an evolution equation is found for waves' behavior at far-field with relaxation mode of molecules. An analytical technique was used to solve this evolution problem, which is a generalized Burger equation. The analytical approach has limitations and requires a very accurate initial guess by a trial method. In this paper, the evolution equation for one-dimensional planar, cylindrical, and spherical flow in the presence of relaxation mode is solved using a collocation approach with a cubic B-spline function. The numerical results are graphed and compared with the exact solution for planar flow. The obtained numerical results match the exact solution quite well and show that the technique is quite reliable and can deal with the nonlinearity involved in the present problem. Results have also been obtained for cylindrical and spherical flow at the far-field. The obtained numerical results show that the present approach with the cubic B-spline function works well and accurately. Fourier stability analysis is used to investigate the stability of the cubic B-spline collocation method.

    Citation: Azhar Iqbal, Abdullah M. Alsharif, Sahar Albosaily. Numerical study of non-linear waves for one-dimensional planar, cylindrical and spherical flow using B-spline finite element method[J]. AIMS Mathematics, 2022, 7(8): 15417-15435. doi: 10.3934/math.2022844

    Related Papers:

  • In a recent study, an evolution equation is found for waves' behavior at far-field with relaxation mode of molecules. An analytical technique was used to solve this evolution problem, which is a generalized Burger equation. The analytical approach has limitations and requires a very accurate initial guess by a trial method. In this paper, the evolution equation for one-dimensional planar, cylindrical, and spherical flow in the presence of relaxation mode is solved using a collocation approach with a cubic B-spline function. The numerical results are graphed and compared with the exact solution for planar flow. The obtained numerical results match the exact solution quite well and show that the technique is quite reliable and can deal with the nonlinearity involved in the present problem. Results have also been obtained for cylindrical and spherical flow at the far-field. The obtained numerical results show that the present approach with the cubic B-spline function works well and accurately. Fourier stability analysis is used to investigate the stability of the cubic B-spline collocation method.



    加载中


    [1] L. I. Sedov, Propagation of strong shock waves, J. Appl. Math. Mech., 10 (1946), 241-250.
    [2] G. Q. Chen, J. Glimm, Global solutions to the compressible Euler equations with geometrical structure, Commun. Math. Phys., 180 (1996), 153-193. https://doi.org/10.1007/BF02101185 doi: 10.1007/BF02101185
    [3] K. G. Guderley, Starke kugelige und zylindrische verdichtungsstosse in der nahe des kugelmitterpunktes bnw, der zylinderachse, Luftfahrtforschung, 19 (1942), 302.
    [4] G. B. Whitham, A note on shock dynamics relative to a moving frame, J. Fluid Mech., 31 (1968), 449-453. https://doi.org/10.1017/S002211206800025X doi: 10.1017/S002211206800025X
    [5] M. J. Siddiqui, R. Arora, A. Kumar, Shock waves propagation under the influence of magnetic field, Chaos Solitons Fract., 97 (2017), 66-74. https://doi.org/10.1016/j.chaos.2016.12.020 doi: 10.1016/j.chaos.2016.12.020
    [6] G. A. Zakeri, Similarity solutions for two-dimensional weak shock waves, J. Eng. Math., 67 (2010), 275-288. https://doi.org/10.1007/s10665-009-9337-4 doi: 10.1007/s10665-009-9337-4
    [7] V. D. Sharma, R. Arora, Similarity solutions for strong shocks in an ideal gas, Stud. Appl. Math., 114 (2005), 375-394. https://doi.org/10.1111/j.0022-2526.2005.01557.x doi: 10.1111/j.0022-2526.2005.01557.x
    [8] L. I. Sedov, On the relativistic theory of rocket flight, J. Appl. Math. Mech., 50 (1986), 700-705. https://doi.org/10.1016/0021-8928(86)90076-6 doi: 10.1016/0021-8928(86)90076-6
    [9] G. I. Taylor, The formation of a blast wave by a very intense explosion I. Theoretical discussion, Proc. R. Soc. A: Math. Phys. Eng. Sci., 201 (1950), 159-174. https://doi.org/10.1098/rspa.1950.0049 doi: 10.1098/rspa.1950.0049
    [10] A. Sakurai, On the propagation and structure of a blast wave, Ⅱ, J. Phys. Soc. Jpn., 9 (1954), 256-266. https://doi.org/10.1143/JPSJ.9.256 doi: 10.1143/JPSJ.9.256
    [11] A. Sakurai, On the propagation and structure of the blast wave, I, J. Phys. Soc. Jpn., 8 (1953), 662-669. https://doi.org/10.1143/JPSJ.8.662 doi: 10.1143/JPSJ.8.662
    [12] A. Iqbal, N. N. Abd Hamid, A. I. M. Ismail, Cubic B-spline Galerkin method for numerical solution of the coupled nonlinear Schrödinger equation, Math. Comput. Simul., 174 (2020), 32-44. https://doi.org/10.1016/j.matcom.2020.02.017 doi: 10.1016/j.matcom.2020.02.017
    [13] S. Deniz, A. Konuralp, M. D. la Sen, Optimal perturbation iteration method for solving fractional model of damped Burgers' equation, Symmetry, 12 (2020), 958. https://doi.org/10.3390/sym12060958 doi: 10.3390/sym12060958
    [14] P. Agarwal, J. Merker, G. Schuldt, Singular integral Neumann boundary conditions for semilinear elliptic PDEs, Axioms, 10 (2021), 74. https://doi.org/10.3390/axioms10020074 doi: 10.3390/axioms10020074
    [15] T. Akram, M. Abbas, A.I. Ismail, S. R. M Sabri, N. M. Noor, Numerical solution of the time fractional Black-Scholes equation using B-spline technique, AIP Conf. Proc., 2423 (2021), 020002. https://doi.org/10.1063/5.0075288 doi: 10.1063/5.0075288
    [16] A. Khalid, M. N. Naeem, P. Agarwal, A. Ghaffar, Z. Ullah, S. Jain, Numerical approximation for the solution of linear sixth order boundary value problems by cubic B-spline, Adv. Differ. Equ., 1 (2019), 1-16. https://doi.org/10.1186/s13662-019-2385-9 doi: 10.1186/s13662-019-2385-9
    [17] T. Akram, M. Abbas, A. I. Ismail, Numerical solution of fractional cable equation via extended cubic B-spline, AIP Conf. Proc., 2138 (2019), 030004. https://doi.org/10.1063/1.5121041 doi: 10.1063/1.5121041
    [18] F. S. Al-Duais, S. A. Asiri, A. Saeed, J. Majdoubi, M. M Alam, T. Gul, Electro-magnetohydrodynamic fractional-order fluid flow with new similarity transformations, J. Nanomat., 2022 (2022), 1-9. https://doi.org/10.1155/2022/5198968 doi: 10.1155/2022/5198968
    [19] A. Sunarto, P. Agarwal, J. Sulaiman, J. V. L Chew, E. Aruchunan, Iterative method for solving one-dimensional fractional mathematical physics model via quarter-sweep and PAOR, Adv. Differ. Equ., 2021 (2021), 1-12. https://doi.org/10.1186/s13662-021-03310-2 doi: 10.1186/s13662-021-03310-2
    [20] R. C. Mittal, R. Bhatia, Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 220 (2013), 496-506. https://doi.org/10.1016/j.amc.2013.05.081 doi: 10.1016/j.amc.2013.05.081
    [21] S. S. Zhou, M. Areshi, P. Agarwal, N. A. Shah, J. D. Chung, K. Nonlaopon, Analytical analysis of fractional-order multi-dimensional dispersive partial differential equations, Symmetry, 13 (2021), 939. https://doi.org/10.3390/sym13060939 doi: 10.3390/sym13060939
    [22] A. Kumar, Study for particular solutions of cylindrical shock waves in magnetogasdynamics, Chin. J. Phys., 69 (2021), 285-294. https://doi.org/10.1016/j.cjph.2020.12.016 doi: 10.1016/j.cjph.2020.12.016
    [23] M. J. Siddiqui, R. Arora, V. P. Singh, Propagation of non-linear waves in a non-ideal relaxing gas, Int. J. Comput. Math., 95 (2018), 2330-2342. https://doi.org/10.1080/00207160.2017.1390221 doi: 10.1080/00207160.2017.1390221
    [24] J. Jena, V. D. Sharma, Far-field behavior of waves in a relaxing gas, Acta Astronaut., 40 (1997), 713-718. https://doi.org/10.1016/S0094-5765(97)00134-3 doi: 10.1016/S0094-5765(97)00134-3
    [25] S. A. V. Manickam, C. Radha, V. D. Sharma, Far field behaviour of waves in a vibrationally relaxing gas, Appl. Numer. Math., 45 (2003), 293-307. https://doi.org/10.1016/S0168-9274(02)00214-3 doi: 10.1016/S0168-9274(02)00214-3
    [26] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Doctoral dissertation, PhD. Thesis, Shanghai Jiao Tong University, 1992.
    [27] S. J. Liao, A short review on the homotopy analysis method in fluid mechanics, J. Hydrodyn., 22 (2010), 839-841. https://doi.org/10.1016/S1001-6058(10)60046-7 doi: 10.1016/S1001-6058(10)60046-7
    [28] C. D. Boor, A practical guide to splines, New York: Springer-Verlag, 1978.
    [29] D. U. Von Rosenberg, Methods for the numerical solution of partial differential equations, American Elsevier Publishing Co., New York, 1969.
    [30] A. H. A. Ali, G. A. Gardner, L. R. T. Gardner, A collocation solution for Burgers' equation using cubic B-spline finite elements, Comput. Methods Appl. Mech. Eng., 100 (1992), 325-337. https://doi.org/10.1016/0045-7825(92)90088-2 doi: 10.1016/0045-7825(92)90088-2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1452) PDF downloads(62) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog