Research article

The generalized 4-connectivity of folded Petersen cube networks

  • Received: 27 April 2022 Revised: 29 May 2022 Accepted: 03 June 2022 Published: 08 June 2022
  • MSC : 05C05, 05C40, 05C76, 68R10

  • The generalized $ \ell $-connectivity $ \kappa_{\ell}(G) $ of a graph $ G $ is a generalization of classical connectivity $ \kappa(G) $ with $ \kappa_{2}(G) = \kappa(G) $. It serves to measure the capability of connection for any $ \ell $ vertices. The folded Petersen cube network $ FPQ_{n, k} $ can be used to model the topological structure of a communication-efficient multiprocessor. This paper shows that the generalized 4-connectivity of the folded Petersen cube network $ FPQ_{n, k} $ is $ n+3k-1 $. As a corollary, the generalized 3-connectivity of $ FPQ_{n, k} $ also is obtained and the results on the generalized 4-connectivity of hypercube $ Q_n $ and folded Petersen graph $ FP_k $ can be verified. These conclusions provide a foundation for studying the generalized 4-connectivity of Cartesian product graphs.

    Citation: Huifen Ge, Shumin Zhang, Chengfu Ye, Rongxia Hao. The generalized 4-connectivity of folded Petersen cube networks[J]. AIMS Mathematics, 2022, 7(8): 14718-14737. doi: 10.3934/math.2022809

    Related Papers:

  • The generalized $ \ell $-connectivity $ \kappa_{\ell}(G) $ of a graph $ G $ is a generalization of classical connectivity $ \kappa(G) $ with $ \kappa_{2}(G) = \kappa(G) $. It serves to measure the capability of connection for any $ \ell $ vertices. The folded Petersen cube network $ FPQ_{n, k} $ can be used to model the topological structure of a communication-efficient multiprocessor. This paper shows that the generalized 4-connectivity of the folded Petersen cube network $ FPQ_{n, k} $ is $ n+3k-1 $. As a corollary, the generalized 3-connectivity of $ FPQ_{n, k} $ also is obtained and the results on the generalized 4-connectivity of hypercube $ Q_n $ and folded Petersen graph $ FP_k $ can be verified. These conclusions provide a foundation for studying the generalized 4-connectivity of Cartesian product graphs.



    加载中


    [1] B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, Distributed secondary consensus fault tolerant control method for voltage and frequency restoration and power sharing control in multi-agent microgrid, Int. J. Elec. Power, 133 (2021), 107251. https://doi.org/10.1016/j.ijepes.2021.107251 doi: 10.1016/j.ijepes.2021.107251
    [2] B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, J. M. Guerrero, Consensus algorithm-based coalition game theory for demand management scheme in smart microgrid, Sustain Cities Soc., 74 (2021), 103248. https://doi.org/10.1016/j.scs.2021.103248 doi: 10.1016/j.scs.2021.103248
    [3] B. N. Alhasnawi, B. H. Jasim, Z. A. S. A. Rahman, J. M. Guerrero, M. D. Esteban, A novel internet of energy based optimal multi-agent control scheme for microgrid including renewable energy resources, Int. J. Environ. Res. Public Health, 18 (2021), 8146. https://doi.org/10.3390/ijerph18158146 doi: 10.3390/ijerph18158146
    [4] B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, E. Hossain, J. M. Guerrero, A new decentralized control strategy of microgrids in the internet of energy paradigm, Energies, 14 (2021), 2183. https://doi.org/10.3390/en14082183 doi: 10.3390/en14082183
    [5] J. A. Bondy, U. S. R. Murty, Graph theory, New York: Springer, 2008.
    [6] G. Chartrand, S. F. Kapoor, L. Lesniak, D. R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq., 2 (1984), 1–6.
    [7] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks, 55 (2010), 360–367. https://doi.org/10.1002/net.20339 doi: 10.1002/net.20339
    [8] G. Chartrand, R. J. Wilson, The Petersen graph, Graph. Appl., 69 (1985), 100.
    [9] S. K. Das, S. Öhring, A. K. Banejee, Embeddings into hyper {P}etersen networks: Yet another hypercube-like interconnection topology, VLSl Design, 2 (1995), 335–351. https://doi.org/10.1155/1995/95759 doi: 10.1155/1995/95759
    [10] K. Efe, P. K. Blackwell, W. Slough, T. Shiau, Topological properties of the crossed cube architecture, Parallel Comput., 20 (1994), 1763–1775. https://doi.org/10.1016/0167-8191(94)90130-9 doi: 10.1016/0167-8191(94)90130-9
    [11] M. Hager, Pendant tree-connectivity, J. Comb. Theory B, 38 (1985), 179–189. https: //doi.org/10.1016/0095-8956(85)90083-8
    [12] C. F. Li, S. W. Li, S. J. Li, The 4-set tree connectivity of $(n, k)$-star networks, Theor. Comput. Sci., 884 (2020), 81–86. https://doi.org/10.1016/j.tcs.2020.08.004 doi: 10.1016/j.tcs.2020.08.004
    [13] H. Li, X. Li, Y. Sun, The generalized 3-connectivity of {C}artesian product graphs, Discrete Math. Theor., 14 (2012), 1. https://doi.org/10.46298/dmtcs.572 doi: 10.46298/dmtcs.572
    [14] H. Li, Y. Ma, W. Yang, Y. Wang, The generalized 3-connectivity of graph products, Appl. Math. Comput., 295 (2017), 77–83. https://doi.org/10.1016/j.amc.2016.10.002 doi: 10.1016/j.amc.2016.10.002
    [15] S. Li, Some topics on generalized connectivity of graphs, Nankai University, 2012.
    [16] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, 2010, arXiv: 1012.5710v1.
    [17] S. Li, W. Li, Y. Shi, H. Sun, On minimally 2-connected graphs with generalized connectivity $\kappa_{3} = 2$, J. Comb. Optim., 34 (2017), 141–164. https://doi.org/10.1007/s10878-016-0075-z doi: 10.1007/s10878-016-0075-z
    [18] S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition 3-partite graphs, Bull. Malays. Math. Sci. Soc., 37 (2014), 103–121.
    [19] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Comb. Optim., 24 (2012), 389–396. https://doi.org/10.1007/s10878-011-9399-x doi: 10.1007/s10878-011-9399-x
    [20] S. Li, X. Li, Y. Shi, The minimal size of a graph with generalized connectivity $\kappa_{3} \geq 2$, Australas. J. Comb., 51 (2011), 209–220.
    [21] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math., 310 (2010), 2147–2165. https://doi.org/10.1016/j.disc.2010.04.011 doi: 10.1016/j.disc.2010.04.011
    [22] S. Li, Y. Shi, J. Tu, The generalized 3-connectivity of {C}ayley graphs on symmetric groups generated by trees and cycles, Graph. Combinator., 33 (2017), 1195–1209. https://doi.org/10.1007/s00373-017-1837-9 doi: 10.1007/s00373-017-1837-9
    [23] S. Li, J. Tu, C. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput., 274 (2016), 41–46. https://doi.org/10.1016/j.amc.2015.11.016 doi: 10.1016/j.amc.2015.11.016
    [24] S. Lin, Q. Zhang, The generalized 4-connectivity of hypercubes, Discrete Appl. Math., 220 (2017), 60–67. https://doi.org/10.1016/j.dam.2016.12.003 doi: 10.1016/j.dam.2016.12.003
    [25] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Comb., 58 (2014), 304–319.
    [26] X. Li, Y. Mao, The generalized 3-connectivity of lexicographic product graphs, Discrete Math. Theor., 16 (2014), 339–354. https://doi.org/10.46298/dmtcs.1266 doi: 10.46298/dmtcs.1266
    [27] X. Li, Y. Mao, Generalized connectivity of graphs, Switzerland: Springer, 2016. https://doi.org/10.1007/978-3-319-33828-6
    [28] S. R. Öhring, S. K. Das, Folded {P}etersen cube networks: new competitors for the hypercubes, IEEE T. Parall. Distr., 7 (1996), 151–168. https://doi.org/10.1109/71.485505 doi: 10.1109/71.485505
    [29] G. Sabidussi, Graphs with given group and given graph theoretical properties, Can. J. Math., 9 (1957), 515–525. https://doi.org/10.4153/CJM-1957-060-7 doi: 10.4153/CJM-1957-060-7
    [30] P. C. Saxena, S. Gupta, J. Rai, A delay optimal coterie on the $k$-dimensional folded {P}etersen graph, J. Parallel Distr. Com., 63 (2003), 1026–1035. https://doi.org/10.1016/S0743-7315(03)00116-3 doi: 10.1016/S0743-7315(03)00116-3
    [31] Y. Sun, S. Zhou, Tree connectivities of {C}aylay graphs on {A}belian groups with small degrees, Bull. Malays. Math. Sci. Soc., 39 (2016), 1673–1685. https://doi.org/10.1007/s40840-015-0147-8 doi: 10.1007/s40840-015-0147-8
    [32] H. Whitney, Congruent graphs and connectivity of graphs, Amer. Math. Soc., 54 (1932), 150–168. https://doi.org/10.2307/2371086 doi: 10.2307/2371086
    [33] S. Zhao, R. Hao, The generalized 4-connectivity of exchanged hypercubes, Appl. Math. Comput., 347 (2019), 342–353. https://doi.org/10.1016/j.amc.2018.11.023 doi: 10.1016/j.amc.2018.11.023
    [34] S. Zhao, R. Hao, The generalized connectivity of alternating group graphs and $(n, k)$-star graphs, Discrete Appl. Math., 251 (2018), 310–321. https://doi.org/10.1016/j.dam.2018.05.059 doi: 10.1016/j.dam.2018.05.059
    [35] S. Zhao, R. Hao, E. Cheng, Two kinds of generalized connectivity of dual cubes, Discrete Appl. Math., 257 (2019), 306–316. https://doi.org/10.1016/j.dam.2018.09.025 doi: 10.1016/j.dam.2018.09.025
    [36] S. Zhao, R. Hao, J. Wu, The generalized 4-connectivity of hierarchical cubic networks, Discrete Appl. Math., 289 (2021), 194–206. https://doi.org/10.1016/j.dam.2020.09.026 doi: 10.1016/j.dam.2020.09.026
    [37] S. Zhao, R. Hao, J. Wu, The generalized 3-connectivity of some regular networks, J. Parallel Distr. Com., 133 (2019), 18–29. https://doi.org/10.1016/j.jpdc.2019.06.006 doi: 10.1016/j.jpdc.2019.06.006
    [38] S. Zhao, R. Hao, L. Wu, The generalized connectivity of $(n, k)$-bubble-sort graphs, Comput. J., 62 (2019), 1277–1283. https://doi.org/10.1093/comjnl/bxy106 doi: 10.1093/comjnl/bxy106
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1580) PDF downloads(89) Cited by(2)

Article outline

Figures and Tables

Figures(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog