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Abstract: The generalized `-connectivity κ`(G) of a graph G is a generalization of classical
connectivity κ(G) with κ2(G) = κ(G). It serves to measure the capability of connection for any `

vertices. The folded Petersen cube network FPQn,k can be used to model the topological structure of
a communication-efficient multiprocessor. This paper shows that the generalized 4-connectivity of the
folded Petersen cube network FPQn,k is n + 3k − 1. As a corollary, the generalized 3-connectivity
of FPQn,k also is obtained and the results on the generalized 4-connectivity of hypercube Qn and
folded Petersen graph FPk can be verified. These conclusions provide a foundation for studying the
generalized 4-connectivity of Cartesian product graphs.
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1. Introduction

As usual, the topological structure of an interconnection network is regarded as a graph G = (V, E),
in which vertices correspond to processors and edges represent communication links between
processors. The fault tolerance is one of the most important factors in the design and analysis of an
interconnection network and it can be measured by the connectivity of a graph. If the connectivity of
a network is larger, then its fault tolerance is higher. The traditional connectivity κ(G) of a graph G is
defined as the minimum number of vertices whose deletion results in a disconnected graph. An
excellent theorem of Whitney [32] provided an equivalent statement about the definition of the
connectivity. That is, for any 2-subset S = {u, v} ⊆ V(G), if κ(S ) denotes the maximum number of
internally disjoint paths between u and v in G, then κ(G) = min{κ(S ) : S ⊆ V(G), |S | = 2}. Clearly,
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κ(G) reflects the connectivity between any two processors. To measure the connectivity capability of
more processors, Chartrand et al. [6] and Hager et al. [11] introduced independently the concept of
the generalized connectivity of a graph by generalizing the equivalent definition of connectivity.

Let G be a connected graph with order n and ` be an integer such that 2 ≤ ` ≤ n. For S ⊆ V(G), a
tree T in G is called an S -tree if S ⊆ V(T ). Let κ(S ) denote the maximum number r of edge-disjoint
S -trees T1, . . . ,Tr satisfying V(Ti) ∩ V(T j) = S for any two distinct integers i, j ∈ {1, . . . , r}. The
generalized `-connectivity κ`(G) of G is defined as min{κ(S ) : S ⊆ V(G), |S | = `}. Actually, κ2(G) is
exactly κ(G).

Though there are numerous results about the generalized `-connectivity over the past years, for
general integer `, the exact values of κ`(G) are known for only a small class of graphs: complete
graph [7], complete bipartite graph [16] and complete equipartition 3-partite graph [18]. Meanwhile,
for a given graph G, any fixed integer k ≥ 2 and a subset S of V(G), the decision problem whether
κ(S ) ≥ k is NP-complete [19]. The upper and lower bounds of the generalized 3-connectivity of a
graph [21, 25] and of Cartesian (Lexicographic) product of two graphs [13, 14, 26] were investigated,
and extremal problems were studied in [17, 22]. The generalized 3-connectivity of some graph classes
are known, including Cayley graphs [20,31], star graphs and bubble-sort graphs [23], alternating group
graphs and (n, k)-star graphs [34], k-ary n-cubes, split-star graphs and bubble-sort star graphs [37],
(n, k)-bubble sort graphs [38], etc. We refer the readers to [15, 27] for more details.

Unfortunately, the results of the generalized 4-connectivity are less known. Only hypercubes [24],
dual cubes [35], exchanged hypercubes [33], (n, k)-star graphs [12], hierarchical cubic networks [36]
have been studied.

The main focus of this paper is to determine the generalized 4-connectivity of the folded Petersen
cube networks FPQn,k. The following result is obtained.

Theorem 1.1. Let k, n be two integers. Then κ4(FPQn,k) = n + 3k − 1.

Theorem 1.1 implies that if k = 0, then κ4(FPQn,0) = n − 1, which coincides the value of κ4(Qn).
The key to prove Theorem 1.1 is Theorem 1.2.

Theorem 1.2. Let FPk be a k-dimensional folded Petersen graph. Then κ4(FPk) = 3k − 1.

For a regular graph, the following lemma is useful.

Lemma 1.1. [24] Let G be an r-regular graph. If κk(G) = r − 1, then κk−1(G) = r − 1, where k ≥ 4.

Combining Theorem 1.1 and Lemma 1.1, the following corollary is an immediate consequence.

Corollary 1.1. Let k, n be two integers. Then κ3(FPQn,k) = n + 3k − 1.

For helping readers to understand the proof process, a flow chart in Figure 1 is presented to illustrate
the relationship between different lemmas, theorems and corollaries.
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Lemma 3.1

Lemma 3.2

Lemma 3.3

Lemma 3.4
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Figure 1. Flow chart.

2. Preliminaries

This section introduces some basic notations and results that will be used throughout the paper.
All graphs considered in this paper are connected, simple, undirected, finite and for the notation and
terminology not defined refer to [5].

2.1. Basic notations and lemmas

Let G = (V, E) be a graph with vertex set V(G) and edge set E(G). For a vertex v of G, we use NG(v)
to denote the set of neighbors of v in G, and the degree of v is dG(v) = |NG(v)|. The minimum degree
and the maximum degree of G are denoted by δ(G) and ∆(G), respectively. A graph G is r-regular if
δ(G) = ∆(G) = r. For two vertices u, v ∈ V(G), a (u, v)-path is denoted by Puv and the length of a
shortest (u, v)-path is called the distance between u and v, denoted by dG(u, v). A subgraph of G is a
graph H = (V ′, E′) such that V ′(H) ⊆ V(G) and E′(H) ⊆ E(G). If V ′(H) = V(G), then H is called a
spanning subgraph of G. The subgraph of G induced by V ′ is denoted by G[V ′]. Let [b] = {1, . . . , b}
for a given integer b.

Lemma 2.1. [21] If there are two adjacent vertices of degree δ, then κ`(G) ≤ δ− 1 for 3 ≤ ` ≤ |V(G)|.

Theorem 2.1. (Menger’s theorem [5]) A graph G is r-connected if and only if any two distinct vertices
of G are connected by at least r internally disjoint paths.

Lemma 2.2. (Fan Lemma [5]) Let G be an r-connected graph, x be a vertex of G, and let Y ⊆ V(G)\{x}
be a set of at least r vertices of G. Then there exists an r-fan in G from x to Y, that is, there exists a
family of r internally disjoint (x,Y)-paths whose terminal vertices are distinct in Y.

2.2. The folded Petersen cube networks

The Cartesian product of graphs is an important tool to construct a bigger network. Recall that the
Cartesian product of two graphs G and H, denoted by G�H, is a graph with the vertex set V(G)×V(H)
such that (g, h) and (g′, h′) are adjacent if and only if either g = g′ and hh′ ∈ E(H), or h = h′ and
gg′ ∈ E(G).

The Petersen graph P with a vertex set {0, 1, 2, . . . , 9} has an outer 5-cycle and an inner 5-cycle are
joined by a perfect matching (Figure 2(a) depicts P with decimal vertex-labeling). It is a 3-regular
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3-connected graph with diameter 2. The k-dimensional folded Petersen graph FPk is constructed by
the k-th iteration of Cartesian product on Petersen graph P, defined as FPk = P� · · ·�P = (V, E),
where V = {x1 · · · xk : xi ∈ {0, 1, ..., 9}, 1 ≤ i ≤ k} and
E = {(x1 · · · xi−1xixi+1 · · · xk, x1 · · · xi−1yxi+1 · · · xk) : y ∈ {0, 1, . . . , 9}, dP(y, xi) = 1 and 1 ≤ i ≤ k}. As
depicted in Figure 1(b), FP2 is obtained from P by replacing each of its vertices by P, denoted by
P0,P1, . . . ,P9, respectively, moreover, between Pi and P j have a perfect matching for dP(i, j) = 1. In
fact, for k ≥ 2, FPk is obtained from P by replacing each of its vertices by FPk−1, and we denote the
10 connected subgraphs by FPi:0

k , FPi:1
k , . . . , FPi:9

k , respectively, where
FPi: j

k = FPk[{x1 · · · xk ∈ V(FPk), xi = j}]. Clearly, FPi: j
k � FPk−1. For convenience, FP j denotes

FP1: j
k for j ∈ {0, 1, . . . , 9} in the rest of this paper. It is easy to see that the subgraph induced by

V(FPi) ∪ V(FP j) is isomorphic to FPk−1�K2 for dP(i, j) = 1, and the edges between V(FPi) and
V(FP j) are called the crossed edges.

0

1

23

4

5

6

78

9

(a)
(b)

Figure 2. (a) The Petersen graph P; (b) Scheme of FP2.

For any x ∈ V(FPi), we call that xi j is a corresponding vertex of x in FPi j if x and xi j differ in exactly
the first digit. In particular, a corresponding vertex xi j of x is an outside neighbor of x if dP(i, i j) = 1.
Apparently, there are exactly three outside neighbors of x. Two graphs G′ and G′′ are corresponding
if their vertices correspond one to one and G′ � G′′. Furthermore, FPk is a 3k-regular 3k-connected
graph with diameter 2k and order 10k, also vertex and edge symmetric. More details see [8, 10].

The folded Petersen cube network FPQn,k = FPk�Qn with 10k×2n vertices is introduced by Öhring
and Das [28], where Qn is an n-dimensional hypercube and it can be regarded as n-th iteration of
Cartesian product on K2. In particular, FPQ0,k = FPk and FPQn,0 = Qn. There are a lot of topological
structures like linear arrays, rings, meshes, hypercubes can be embedded into it. Some research findings
on the folded Petersen cube networks have been published for the past several years, see [9, 28, 30].

The following result will be used to prove Theorem 1.2.

Lemma 2.3. Let S be a vertex subset of the Petersen graph P with |S | = 4. Then there exist two
internally disjoint S -trees in P.

Proof. Let P be a Petersen graph, S = {x, y, z,w} ⊆ V(P) and G = P[S ]. Then dG(v) ≤ 3 for
arbitrary v ∈ V(G). Since P is vertex symmetric, assume that dG(x) = ∆(G). If dG(x) = 3, then
NG(x) = {y, z,w}. Two internally disjoint S -trees are demonstrated in Figure 3(a). If dG(x) = 2,
without loss of generality, let NG(x) = {y, z}. It suffices to consider two cases and the required S -trees
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are demonstrated in Figure 3(b) and Figure 3(c), respectively. If dG(x) = 1, assume that NG(x) = {y}, it
suffices to consider two cases and the required S -trees are demonstrated in Figure 3(d) and Figure 3(e),
respectively. If dG(x) = 0, Figure 2( f ) demonstrates two internally disjoint S -trees.
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Figure 3. Illustrations of the proof of Lemma 2.3.

3. Main results

In this section, we mainly determine κ4(FPk). First, propose the general idea of the proof κ4(FPk) ≥
3k − 1. From the definition of κ4(FPk), it suffices to show that κFPk(S ) ≥ 3k − 1 for arbitrary S ⊆
V(FPk) with |S | = 4. Furthermore, according to the definition of κFPk(S ), find out 3k − 1 internally
disjoint S -trees in FPk. Let S be a set of arbitrary four distinct vertices in FPk. Recall that FPk

can be decomposed into 10 disjoint sub-folded Petersen graphs FP0, FP1, . . . , FP9, each of which is
isomorphic to FPk−1 by removing all crossed edges.

For arbitrary four vertices v0, v1, v2, v3 in P, by Lemma 2.3, there are two internally disjoint
{v0, v1,v2,v3}-trees T ∗1 and T ∗2 in P. At least one of the trees T ∗1 and T ∗2 contains a vertex u different
from v0, v1, v2, v3. Without loss of generality, let T ∗2 be such a tree. Clearly, (T ∗1 ∪ T ∗2)�FPk−1 is a
subgraph of FPk. If we can prove that κT ∗1�FPk−1(S ) ≥ 3k − 2 and find out an S -tree in T ∗2�FPk−1, then
κFPk(S ) ≥ κT ∗1�FPk−1(S ) + 1 ≥ 3k − 1. In this case, the problem is converted into finding out 3k − 2
internally disjoint S -trees in T ∗1�FPk−1 and an S -tree in T ∗2�FPk−1 such that all of the S -trees are
internally disjoint.

Observation 3.1. For arbitrary three vertices v0, v1, v2 in P, one of the following holds.
(i) If {v0, v1, v2} is an isolated set, then there are three internally disjoint {v0, v1, v2}-trees T ∗1 ,T

∗
2 ,T

∗
3

in P. Moreover, there exists a vertex ui with degree 3 different from v0, v1, v2 in T ∗i for i = 1, 2, 3.
(ii) If {v0, v1, v2} is not an isolated set, then there are a C5 and a {v0, v1, v2}-tree T ∗3 in P such that

v0, v1, v2 ∈ V(C5) and V(C5) ∩ V(T ∗3) = {v0, v1, v2}. Moreover, there exists a vertex u with degree 3
different from v0, v1, v2 in T ∗3 .

For Observation 3.1(i), it is easy to see that (
⋃3

i=1 T ∗i )�FPk−1 is a subgraph of FPk (see Figure 4).
Notice that T ∗1 ,T

∗
2 and T ∗3 are internally disjoint in P, if we can prove that κT ∗1�FPk−1(S ) ≥ 3k − 3, find

out an S -tree in T ∗2�FPk−1 and another S -tree in T ∗3�FPk−1, then κFPk(S ) ≥ κT ∗1�FPk−1(S ) + 2 ≥ 3k − 1.
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In this case, the problem is converted into finding out 3k−3 internally disjoint S -trees in T ∗1�FPk−1, an
S -tree in T ∗2�FPk−1 and another S -tree in T ∗3�FPk−1 such that all of the S -trees are internally disjoint.

Figure 4. An example for (
⋃3

i=1 T ∗i )�FPk−1 is a subgraph of FPk.

For Observation 3.1(ii), let C = C5, it can be seen that (C ∪ T ∗3)�FPk−1 is a subgraph of FPk

(see Figure 5). If we can prove that κC�FPk−1(S ) ≥ 3k − 2, and find out an S -tree in T ∗3�FPk−1, then
κFPk(S ) ≥ κC�FPk−1(S ) + 1 ≥ 3k − 1. In this case, the problem is converted into finding out 3k − 2
internally disjoint S -trees in C�FPk−1 and an S -tree in T ∗3�FPk−1 such that all of the S -trees are
internally disjoint.

Figure 5. An example for (C ∪ T ∗3)�FPk−1 is a subgraph of FPk.

For arbitrary two vertices v0, v1 in P, by Theorem 2.1, there are three internally disjoint (v0, v1)-paths
L∗1, L∗2 and L∗3 in P because the Petersen graph P is 3-connected. Note that

⋃3
i=1 L∗i is a subgraph of P

and (
⋃3

i=1 L∗i )�FPk−1 is a subgraph of FPk (see Figure 6). If we can prove that κL∗1�FPk−1(S ) ≥ 3k − 3,
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find out an S -tree in L∗2�FPk−1 and another S -tree in L∗3�FPk−1, then κFPk(S ) ≥ κ(∪3
i=1L∗i )�FPk−1

(S ) ≥
κL∗1�FPk−1(S ) + 2 ≥ 3k − 1. In this case, the problem is converted into finding out 3k − 3 internally
disjoint S -trees in L∗1�FPk−1, an S -tree in L∗2�FPk−1 and another S -tree in L∗3�FPk−1 such that all of
the S -trees are internally disjoint.

Figure 6. An example for (
⋃3

i=1 L∗i )�FPk−1 is a subgraph of FPk.

The following four lemmas will be helpful to main result.

Lemma 3.1. Let FPk be a k-dimensional folded Petersen graph and S = {x, y, z,w} be a set of arbitrary
four distinct vertices in FPk for k ≥ 2. If the vertices in S belong to four sub-folded Petersen graphs of
FPk, then there are 3k − 1 internally disjoint S -trees in FPk.

Proof. Let FP0, FP1, . . . , FP9 be 10 disjoint sub-folded Petersen graphs of FPk. Since the vertices in
S belong to four sub-folded Petersen graphs of FPk, there exist v0, v1, v2, v3 ∈ {0, 1, . . . , 9} such that
they are mutual distinct and x ∈ V(FPv0), y ∈ V(FPv1), z ∈ V(FPv2) and w ∈ V(FPv3).

For v0, v1, v2, v3 ∈ V(P), there exist two internally disjoint {v0, v1, v2, v3}-trees T ∗1 and T ∗2 in P by
Lemma 2.3. At least one of the trees T ∗1 and T ∗2 contains a vertex c different from v0, v1, v2, v3, say T ∗2 is
such a tree. Since FPc is connected, there exists an {xc, yc, zc,wc}-tree T ′3k−2 in FPc. There is a unique
path to connect arbitrary two vertices in T ∗2 . That is, we can find the corresponding path to connect
arbitrary two vertices in T ∗2�FPk−1. Let T3k−2 = T ′3k−2 ∪ Pxxc ∪ Pyyc ∪ Pzzc ∪ Pwwc .

Let x0 = x. Choose 3k − 2 distinct vertices x0, x1, x2, . . . , x3k−3 from FPv0 being X such that yv0 , zv0

and wv0 belong to X and |X| = 3k− 2. Without loss of generality, assume that xr = yv0 , xs = zv0 , xt = wv0

for r, s, t ∈ {0, 1, . . . , 3k − 3}. Let Y =
⋃3k−3

i=0 yi, Z =
⋃3k−3

i=0 zi and W =
⋃3k−3

i=0 wi be the corresponding
vertices of vertices of X in FPv1 , FPv2 and FPv3 , respectively, where yi = xv1

i , zi = xv2
i and wi = xv3

i for
each i ∈ {0, 1, . . . , 3k − 3}. Then |Y | = |Z| = |W | = 3k − 2. By Lemma 2.2 and κ(FPk−1) = 3k − 3,
there are 3k − 3 internally disjoint paths A1, A2, . . . , A3k−3 from a to A \ {a} in FPv j for (a, A, j) =

(x, X, 0), (y,Y, 1), (z,Z, 2), (w,W, 3), respectively. Since there is a unique path to connect arbitrary two
vertices in T ∗1 , we can find the corresponding path to connect corresponding vertices in T ∗1�FPk−1.
Construct 3k − 2 internally disjoint S -trees in T ∗1�FPk−1 as follows: Ti = Xi ∪ Pxiyi ∪ Yi ∪ Pyizi ∪ Zi ∪

Pziwi ∪ Wi for i ∈ {0, 1, . . . , 3k − 3}, where X0 = {x0} = {x}, Yr = {yr} = {y}, Zs = {zs} = {z} and
Wt = {wt} = {w}. Then, T0,T1, . . . ,T3k−2 are 3k − 1 internally disjoint S -trees in FPk. See Figure 7.
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Figure 7. Illustrations of Lemma 3.1.

Lemma 3.2. Let FPk be a k-dimensional folded Petersen graph and S = {x, y, z,w} be a set of arbitrary
four distinct vertices in FPk for k ≥ 2. If the vertices in S belong to three sub-folded Petersen graphs
of FPk, then there are 3k − 1 internally disjoint S -trees in FPk.

Proof. Let FP0, FP1, . . . , FP9 be 10 disjoint sub-folded Petersen graphs of FPk. Since the vertices
in S belong to three sub-folded Petersen graphs of FPk, there exist v0, v1, v2 ∈ {0, 1, . . . , 9} such that
x, y ∈ V(FPv0), z ∈ V(FPv1) and w ∈ V(FPv2) by the symmetry of FPk.

Since FPk−1 is (3k− 3)-connected, there exist 3k− 3 internally disjoint (x, y)-paths P1, P2, . . . , P3k−3

in FPv0 . Choose xi ∈ V(Pi) such that xi , x. Let zi = xv1
i and wi = xv2

i for i ∈ [3k − 3]. By Lemma 2.2,
there are 3k − 3 paths Pzz1 , . . . , Pzz3k−3 and 3k − 3 paths Pww1 , . . . , Pww3k−3 in FPv1 and FPv2 , respectively.
It is possible that one of the paths Pzzi (resp. Pwwi) is a single vertex.
Case 1. {v0, v1, v2} is an isolated set.

By Observation 3.1(i), there exists a {v0, v1, v2}-tree T ∗1 which contains a vertex a with degree 3
different from v0, v1, v2 in P. Moreover, there are a unique (v0, a)-path Pv0a, a unique (v1, a)-path Pv1a

and a unique (v2, a)-path Pv2a in T ∗1 . It is not hard to find 3k−3 internally disjoint S -trees in T ∗1�FPk−1,
that is, Ti = Pi ∪ Pxi xa

i
∪ Pzzi ∪ Pzi xa

i
∪ Pwwi ∪ Pwi xa

i
for i ∈ [3k − 3], where Pxi xa

i
� Pv0a, Pzi xa

i
� Pv1a and

Pwi xa
i
� Pv2a.

Except T ∗1 , there are two internally disjoint {v0, v1, v2}-trees T ∗2 and T ∗3 in P, T ∗2 and T ∗3 contains
a vertex with degree 3 different from v0, v1 and v2, denoted by b and c, respectively. Since FPb is
connected, there exists an {xb, yb, zb,wb}-tree T ′3k−2 in FPb (resp. {xc, yc, zc,wc}-tree T ′3k−1 in FPc). By
the definition of FPk, there exist the paths Pxxb , Pyyb , Pzzb , Pwwb (resp. Pxxc , Pyyc , Pzzc , Pwwc) in FPk such
that Pxxb � Pyyb � Pv0b, Pzzb � Pv1b, Pwwb � Pv2b (resp. Pxxc � Pyyc � Pv0c, Pzzc � Pv1c, Pwwc � Pv2c)
where Pv0b, Pv1b, Pv2b belong to T ∗2 (resp. Pv0c, Pv1c, Pv2c belong to T ∗3). Let T3k−2 = T ′3k−2 ∪ Pxxb ∪ Pyyb ∪

Pzzb ∪ Pwwb (resp. T3k−1 = T ′3k−1 ∪ Pxxc ∪ Pyyc ∪ Pzzc ∪ Pwwc). Then, T1,T2, . . . ,T3k−1 are 3k− 1 internally
disjoint S -trees in FPk. See Figure 8.
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Figure 8. Illustrations of Case 1 in Lemma 3.2.

Case 2. {v0, v1, v2} is not an isolated set.
By Observation 3.1(ii), there exists a cycle C for C = C5 and a {v0, v1, v2}-tree T ∗3 in P such that

V(C) ∩ V(T ∗3) = {v0, v1, v2}. Let R be a shorter path containing vertices v0, v1, v2 in C, say (v0, v2)-path
being such a path. Then R = Pv0v1 ∪ Pv1v2 . Let Ti = Pi ∪ Pxizi ∪ Pzzi ∪ Pziwi ∪ Pwwi for i ∈ [3k− 3], where
Pxizi � Pv0v1 and Pziwi � Pv1v2 .

x y
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wi
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FP cFP d

x y
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Figure 9. Illustrations of Case 2 in Lemma 3.2.

Clearly, R is a {v0, v1, v2}-tree with |V(R)| ≤ 4 and there exists another (v0, v2)-path R′ containing a
non-end vertex d, then R′ = Pv0d ∪ Pv2d. Since FPd is connected, there exists an {xd, yd, zd,wd}-tree
T ′3k−2 in FPd. If zv0 <

⋃3k−3
i=1 V(Pi) (see Figure 9(a)), then zv0 ∈ Pzzd , where Pzzd � Pv0v1 ∪ Pv0d. Let

T3k−2 = T ′3k−2∪Pxxd ∪Pyyd ∪Pzzd ∪Pwwd , where Pxxd � Pyyd � Pv0d and Pwwd � Pv2d. If zv0 ∈
⋃3k−3

i=1 V(Pi)
(see Figure 9(b)), without loss of generality, assume that zv0 ∈ P1 and x1 = zv0 , then the path Pzz1 is a
single vertex. Let z3k−2 = yv1 . Then there exists a path Pzz3k−2 in FPv1 . Let T3k−2 = T ′3k−2 ∪ Pxxd ∪ Pyyd ∪

Pyz3k−2 ∪ Pzz3k−2 ∪ Pwwd , where Pxxd � Pyyd � Pv0d, Pyz3k−2 � Pv0v1 and Pwwd � Pv2d. The S -tree T3k−1 can
be similarly constructed as T3k−1 of Case 1. Then, T1,T2, . . . ,T3k−1 are 3k−1 internally disjoint S -trees
in FPk.
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Lemma 3.3. Let FPk be a k-dimensional folded Petersen graph and S = {x, y, z,w} be a set of arbitrary
four distinct vertices in FPk for k ≥ 2. If the vertices in S belong to the same sub-folded Petersen
graphs of FPk, then there are 3k − 1 internally disjoint S -trees in FPk.

Proof. Let FP0, FP1, . . . , FP9 be 10 disjoint sub-folded Petersen graphs of FPk. The vertices in S
belong to the same sub-folded Petersen graph, without loss of generality, suppose that x, y, z,w ∈
V(FP0). Since FP0 � FPk−1, by induction hypothesis, we have κ4(FPk−1) ≥ 3k − 4. Hence, there exist
3k − 4 internally disjoint S -trees T1,T2, . . . ,T3k−4 in FP0. Clearly, there exists an {x1, y1, z1,w1}-tree
T ′3k−3 in FP1, an {x4, y4, z4,w4}-tree T ′3k−2 in FP4 and an {x5, y5, z5,w5}-tree T ′3k−1 in FP5. Let T3k−3 =

T ′3k−3∪xx1∪yy1∪zz1∪ww1, T3k−2 = T ′3k−2∪xx4∪yy4∪zz4∪ww4 and T3k−1 = T ′3k−1∪xx5∪yy5∪zz5∪ww5.
Then, T1,T2, . . . ,T3k−1 are 3k − 1 internally disjoint S -trees in FPk.

Lemma 3.4. Let FPk be a k-dimensional folded Petersen graph and S = {x, y, z,w} be a set of arbitrary
four distinct vertices in FPk for k ≥ 2. If the vertices in S belong to two sub-folded Petersen graphs of
FPk, then there are 3k − 1 internally disjoint S -trees in FPk.

Proof. Let FP0, FP1, . . . , FP9 be 10 disjoint sub-folded Petersen graphs of FPk. Suppose that the
vertices in S belong to two distinct sub-folded Petersen graphs FPv0 and FPv1 , where
v0, v1 ∈ {0, 1, . . . , 9}. For v0, v1 ∈ V(P), since the Petersen graph P is 3-connected, by Theorem 2.1,
there are three internally disjoint (v0, v1)-paths L∗1, L∗2 and L∗3 in P. For convenience, let
|V(L∗1)| ≤ |V(L∗2)| ≤ |V(L∗3)|. It implies that 2 ≤ |V(L∗1)| ≤ 3. We just consider |V(L∗1)| = 2 as the
discussion for |V(L∗1)| = 3 is similar. Without loss of generality, suppose that v0 = 0 and v1 = 1. By the
symmetry of FPk, the following cases be considered.
Case 1. x, y, z ∈ V(FP0) and w ∈ V(FP1).
Case 1.1. w0 ∈ {x, y, z}.

Without loss of generality, suppose that w0 = z. By induction hypothesis and Lemma 1.1, we can
find 3k − 4 internally disjoint {x, y, z}-trees T ′1,T

′
2, . . . ,T

′
3k−4 in FP0. Let T ′ =

⋃3k−4
i=1 T ′i .

Case 1.1.1. |NT ′(z) ∩ {x, y}| ≤ 1.
First, construct two internally disjoint S -trees T3k−2 and T3k−1 in L∗2�FPk−1 and L∗3�FPk−1,

respectively. Since FP4 and FP5 are connected, there exist an {x4, y4, z4}-tree T ′3k−2 in FP4 and an
{x5, y5, z5}-tree T ′3k−1 in FP5, respectively. By the definition of FPk, there exist two paths Pwz4 and Pwz5

such that Pwz4 � L∗2 \ {0} and Pwz5 � L∗3 \ {0}. Let T3k−2 = T ′3k−2 ∪ xx4 ∪ yy4 ∪ zz4 ∪ Pwz4 and
T3k−1 = T ′3k−1 ∪ xx5 ∪ yy5 ∪ zz5 ∪ Pwz5 . Then T3k−2 and T3k−1 are internally disjoint S -trees in FPk.

Next, construct 3k − 3 internally disjoint S -trees T1,T2, . . . ,T3k−3 in L∗1�FPk−1 such that
T1,T2, . . . ,T3k−1 are 3k − 1 internally disjoint S -trees in FPk.

Since |NT ′(z)∩ {x, y}| ≤ 1, without loss of generality, assume that |NT ′i (z)∩ {x, y}| = 0 and dT ′i (z) = 1
for i = 1, 2, . . . , 3k − 6. Let Ti = T ′i ∪ ziwi ∪ wiw, where i ∈ [3k − 6], zi is the neighbor of z in T ′i and
wi = z1

i . Note that if |NT ′(z) ∩ {x, y}| = 1, say y ∈ NT ′(z). By symmetry, consider the following two
cases.
Case 1.1.1.1. dT ′3k−5

(z) = dT ′3k−4
(z) = 1.

If y < NT ′(z), let Ti = T ′i ∪ ziwi ∪ wiw for i = 3k − 5 and 3k − 4, where zi is the neighbor of
z in T ′i and wi = z1

i . Otherwise, assume that y ∈ NT ′3k−5
(z). Let T3k−5 = T ′3k−5 ∪ zw and T3k−4 =

T ′3k−4 ∪ z3k−4w3k−4 ∪ w3k−4w. It is clear that |NT ′(z) ∩ V(FP0)| ≤ 3k − 4, so there is a neighbor z3k−3 of
z in FP0. Let T =

⋃3k−4
i=1 Ti and W = NT (w). Then |W ∩ V(FP1)| ≤ 3k − 4. Since FP1 is (3k − 3)-

connected, FP1 − W is still connected, thus we can find an {x1, y1,w,w3k−3}-tree T ′3k−3 in FP1 − W,
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where w3k−3 = z1
3k−3. Let T3k−3 = T ′3k−3 ∪ xx1 ∪ yy1 ∪ zz3k−3 ∪ z3k−3w3k−3.

Case 1.1.1.2. dT ′3k−5
(z) = 1 and dT ′3k−4

(z) = 2.
If y < NT ′(z), let Ti = T ′i ∪ ziwi ∪ wiw for i = 3k − 5 and 3k − 4, where zi is one of the neighbors of

z in T ′i and wi = z1
i . Let T =

⋃3k−4
i=1 Ti and W = NT (w). Then |W ∩ V(FP1)| = 3k − 4. Since FP1 is

(3k − 3)-connected, FP1 −W is still connected, thus there exists an {x1, y1,w}-tree T ′3k−3 in FP1 −W.
Let T3k−3 = T ′3k−3 ∪ xx1 ∪ yy1 ∪ zw.

Suppose that y ∈ NT ′(z). Without loss of generality, assume that y ∈ NT ′3k−5
(z). Clearly, T ′3k−5

is an (x, z)-path containing y and T ′3k−4 is an (x, y)-path containing z. That is, T ′3k−5 = Pxy ∪ yz and
T ′3k−4 = Pxz ∪ Pzy, where the lengths of Pxz and Pzy are least 2, see Figure 10(a). Let T ′′3k−5 = Pxy ∪ Pzy

and T ′′3k−4 = Pxz ∪ yz, see Figure 10(b). Actually, T ′3k−5 and T ′3k−4 in the case y ∈ NT ′3k−4
(z) are T ′′3k−5

and T ′′3k−4, respectively. Let Ti = T ′′i ∪ ziwi ∪ wiw for i = 3k − 5, 3k − 4, where zi , y and zi is the
neighbor of z in T ′′i . Let T =

⋃3k−4
i=1 Ti and W = NT (w), then |W ∩ V(FP1)| = 3k − 4 and FP1 −W is

still connected, thus there exists an {x1, y1,w}-tree T ′3k−3 in FP1−W. Let T3k−3 = T ′3k−3∪ xx1∪yy1∪ zw,
see Figure 10(c).

y zx
T ′
3k−5

T ′
3k−4

y zx
T ′′
3k−5

T ′′
3k−4

(a)

y zx

(b)

z3k−5

z3k−4

w3k−5

y1 wx1

w3k−4

(c)

T3k−5

T3k−4T3k−3

Figure 10. Illustrations of y ∈ NT ′(z) in Case 1.1.1.2.

Then, T1,T2, . . . ,T3k−1 are 3k − 1 internally disjoint S -trees in FPk.
Case 1.1.2. |NT ′(z) ∩ {x, y}| = 2.

Recall the decimal vertex-labeling of the FPk. Without loss of generality, assume that w0 = z =

000 . . . 00. Then w = 100 . . . 00. Notice that x, y, z are either in a subgraph of FPk isomorphic to C5 or
C4 when k ≥ 2.
Case 1.1.2.1. x, y, z are in a subgraph of FPk isomorphic to C5.

By symmetry, assume that x = 000 . . . 01, y = 000 . . . 04. If k ≥ 3, then x, y, z,w ∈ FP j:0
k for

j ∈ {2, . . . , k − 1} when dividing FPk along the jth dimension. Thus, the desired trees can be found
similarly to Lemma 3.3. Suppose that k = 2. Then x = 01, y = 04, z = 00 and w = 10. The desired
trees can be found similarly to Lemma 3.2 when dividing FPk along the 2th dimension.
Case 1.1.2.2. x, y, z are in a subgraph of FPk isomorphic to C4.

In this case, k ≥ 3. Without loss of generality, assume that x = 000 . . . 01 and y = 000 . . . 10. If
k ≥ 4, then x, y, z,w ∈ FP j:0 for j ∈ {2, . . . , k − 2} when dividing FPk along the jth dimension. Thus,
we can find out desired trees similarly to Lemma 3.3. Suppose that k = 3. Then x = 001, y = 010,
z = 000 and w = 110. The desired trees are shown in Figure. 11.
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Figure 11. Eight internally disjoint S -trees of FP3 in Case 1.1.2.2.

Case 1.2. w0 < {x, y, z}.
Case 1.2.1. |NFP0(w0) ∩ {x, y, z}| ≤ 1.

First, construct 3k − 3 internally disjoint S -trees T1,T2, . . . ,T3k−3 in L∗1�FPk−1 such that
T1,T2, . . . ,T3k−1 are 3k − 1 internally disjoint S -trees in FPk.

Let S ′ = {x, y, z,w0}. Since FP0 � FPk−1, by induction hypothesis, there exist 3k − 4 internally
disjoint S ′-trees T ′1,T

′
2, . . . ,T

′
3k−4 in FP0. Since |NFP0(w0) ∩ {x, y, z}| ≤ 1, without loss of generality,

assume that |NT ′i (w
0)∩{x, y, z}| = 0 for i ∈ [3k−4] and i , 1. Let T1 = T ′1∪ww0. Since dFP0(w0) = 3k−3,

we have 1 ≤ dT ′i (w
0) ≤ 2 for i ∈ [3k − 4]. For i = 2, . . . , 3k − 4, let Ti = (T ′i \ w0) ∪ wiw1

i ∪ w1
i w if

NT ′i (w
0) = {wi} and let Ti = (T ′i \ w0) ∪ wiw1

i ∪ w1
i w ∪ w jw1

j ∪ w1
jw if NT ′i (w

0) = {wi,w j}.
Let T =

⋃3k−4
i=1 Ti and W = NT (w). Then |W ∩ V(FP1)| = 3k − 4. Since FP1 is (3k − 3)-connected,

FP1 − W is still connected, thus there exists an {x1, y1, z1,w}-tree T ′3k−3 in FP1 − W. Let T3k−3 =

T ′3k−3 ∪ xx1 ∪ yy1 ∪ zz1.
Next, construct two internally disjoint S -trees T3k−2 and T3k−1 in L∗2�FPk−1 and L∗3�FPk−1,

respectively. Since P is a simple graph, there exist two non-end vertices 4 and 5 in L∗2 and L∗3,
respectively. Clearly, FP4 is connected and there exists an {x4, y4, z4,w4}-tree T ′3k−2 in FP4. Let
T3k−2 = T ′3k−2 ∪ xx4 ∪ yy4 ∪ zz4 ∪ Pww4 , where Pww4 � L∗2 \ {0}. Similarly, construct
T3k−1 = T ′3k−1 ∪ xx5 ∪ yy5 ∪ zz5 ∪ Pww5 . Then, T1,T2, . . . ,T3k−1 are 3k − 1 internally disjoint S -trees in
FPk.
Case 1.2.2. |NFP0(w0) ∩ {x, y, z}| ≥ 2.

Without loss of generality, suppose that {x, y} ⊆ NFP0(w0) and w0 = 000 · · · 00. Clearly, w =

100 · · · 00. Note that x, y,w0 are either in a subgraph of FPk isomorphic to C5 or C4 when k ≥ 2.
Case 1.2.2.1. x, y,w0 are in a subgraph of FPk isomorphic to C5.

Without loss of generality, assume that x = 000 · · · 01 and y = 000 · · · 04. Let z = 0z2z3 · · · zk−1zk. If
there exists j ∈ {2, . . . , k − 1} such that z j = 0, then x, y, z,w ∈ FP j:0

k when dividing FPk along the jth
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dimension. Thus, we can find out desired trees similarly to Lemma 3.3. It suffices to consider the case
z j , 0 for j = 2, . . . , k − 1.

If k ≥ 3, then x, y,w ∈ V(FP2:0
k ), z ∈ V(FP2:z2

k ), z0 = 00z3 · · · zk−1zk < {x, y,w} and |N(z0) ∩
{x, y,w}| ≤ 1 when dividing FPk along the 2th dimension. Thus, we can find out desired trees Similarly
to case 1.2.1.

Suppose that k = 2, there are x = 01, y = 04, w = 10, z = 0z2 and z2 < {0, 1, 4}. We can find out
desired trees similarly to Lemma 3.1 when dividing FPk along the 2th dimension.
Case 1.2.2.2. x, y,w0 are in a subgraph of FPk isomorphic to C4.

In this case, k ≥ 3. Without loss of generality, assume that x = 000 · · · 01 and y = 000 · · · 40. Let
z = 0z2z3 . . . zk−2zk−1zk. If there exists j ∈ {2, . . . , k − 2} such that z j = 0, then x, y, z,w ∈ FP j:0

k when
dividing FPk along the jth dimension. Thus, we can find out desired trees similarly to Lemma 3.3. It
suffices to consider the case z2, z3, . . . , zk−2 , 0.

If k ≥ 4, we divide FPk along the 2th dimension. Then x, y,w ∈ V(FP2:0
k ), z ∈ V(FP2:z2

k ), z0 =

00z3 · · · zk−1zk < {x, y,w} and |N(z0) ∩ {x, y,w}| ≤ 1 except z0 = 0041. Similarly to case 1.2.1, we can
find 3k − 3 internally disjoint S -trees. When z0 = 0041, x = 0001, y = 0040, w = 1000, assume that
z = 0141 (for z = 0z241 and z2 , 0 is similar). Clearly, |N(z0) ∩ {x, y,w}| = 2. The desired trees are
shown in Figure 12.
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Figure 12. Eleven internally disjoint S -trees of FP4 in Case 1.2.2.2.

Suppose that k = 3, we have x = 001, y = 040, w = 100, z = 0z2z3 < {x, y,w0}. If z2 < {0, 4},
then x,w ∈ FP2:0

3 , y ∈ FP2:4
3 and z ∈ FP2:z2

3 when dividing FP3 along the 2th dimension. Thus, we
can find out desired trees similarly to Lemma 3.2. If z3 < {0, 1}, then x ∈ FP3:1

3 , y,w ∈ FP3:0
3 and

z ∈ FP3:z3
3 when dividing FP3 along the 3th dimension. Thus, we can find out desired trees similarly

to Lemma 3.2. Suppose z2 ∈ {0, 4} and z3 ∈ {0, 1}. Since z , x, y,w, then z = 041. The desired trees
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are shown in Figure 13.
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Figure 13. Eight internally disjoint S -trees of FP3 in Case 1.2.2.2.

Case 2. x, y ∈ V(FP0) and z,w ∈ V(FP1).
Notice that |V(L∗2)| ≥ 3 and |V(L∗3)| ≥ 3. Without loss of generality, let 4 ∈ V(L∗2) and 5 ∈ V(L∗3).

Since FP4 is connected, there exists an {x4, y4, z4,w4}-tree T ′3k−2 in FP4, similarly, there exists an
{x5, y5, z5,w5}-tree T ′3k−1 in FP5. By the definition of FPk, there exist four paths Pzz4 , Pww4 , Pzz5 and
Pww5 such that Pzz4 � Pww4 � L∗2 \ {0} and Pzz5 � Pww5 � L∗3 \ {0}. Let
T3k−2 = T ′3k−2 ∪ xx4 ∪ yy4 ∪ Pzz4 ∪ Pww4 and T3k−1 = T ′3k−1 ∪ xx5 ∪ yy5 ∪ Pzz5 ∪ Pww5 . Then T3k−2 and
T3k−1 are internally disjoint S -trees in FPk. Main goal is to find out 3k − 3 internally disjoint S -trees
in L∗1�FPk−1. Let S ′ be a set of x, y, z0 and w0. Without loss of generality, assume that
d(x, z0) = min d(u, v) for u, v ∈ S ′.
Case 2.1. |S ′| ≤ 3.

In this case, d(x, z0) = 0, that is, z0 = x. Since FPk−1 is (3k − 3)-connected, by Theorem 2.1, there
exist 3k − 3 internally disjoint (x, y)-paths P1, P2, . . . , P3k−3 in FP0 and 3k − 3 internally disjoint (z,w)-
paths P′1, P

′
2, . . . , P

′
3k−3 in FP1. Let xi ∈ NPi(x) and zi ∈ NP′i (z). Then there exists zi ∈ V(P′i) such that

zi is a corresponding vertex of x j in FP1 for i, j ∈ [3k − 3], suppose that i = j. Hence, xizi ∈ E(FPk).
Let Ti = Pi ∪ xizi ∪ P′i for i ∈ [3k − 3]. Then, T1,T2, . . . ,T3k−3 are 3k − 3 internally disjoint S -trees in
L∗1�FPk−1. See Figure 14(a).
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Figure 14. (a) Illustrations of Case 2.1; (b) Illustrations of Case 2.2 for d(x, z) = 2.

Case 2.2. |S ′| = 4.
In this case, d(x, z0) ≥ 1. It implies that d(x, z) ≥ 2. If d(x, z) = 2. Without loss of generality, assume

that x = 000 · · · 00. Then z = 1c2 · · · ck such that there exist an i ∈ {2, . . . , k} satisfying dP(0,ci) = 1 and
others ci = 0, say z = 110 · · · 00. If there exist a dimension j such that |S ∩ FP j:i| , 2 for j ∈ [k] and
i ∈ {0, 1, . . . , 9} when dividing FPk along the jth dimension, then we can find out the desired S -trees
by the above discussion. Hence, suppose that |S ∩ FP j:i| = 2 for arbitrary j when dividing FPk along
the jth dimension. Thus, y = 01b3 · · · bk and w = 10b3 · · · bk, where bi , 0 for i ∈ {3, . . . , k}.

Let FPi j = FPk[d1d2d3 · · · dk ∈ V(FPk) : d1 = i, d2 = j]. Then FPi j � FPk−2. Let x1 be
corresponding vertex of y in FP00. Then x1 , x. Choose 3k − 7 vertices x2, . . . , x3k−6 from NFP00(x),
denote X = {x1, . . . , x3k−6}. For i = 1, . . . , 3k − 6, let zi be corresponding vertices of xi in FP11, denote
Z = {z1, . . . , z3k−6}. For i = 2, . . . , 3k − 6, let yi and wi be corresponding vertices of xi in FP01 and
FP10, respectively. Denote Y = {y1, . . . , y3k−7} and W = {w1, . . . ,w3k−7}, where y1 and w1 are be
corresponding vertices of x in FP01 and FP10, respectively. Since FPk−2 is (3k − 6)-connected, there
exist 3k − 6 internally disjoint (a, A)-paths A1, . . . , A3k−6 in FPi j for
(a, A, i j) = (x, X, 00), (y,Y, 01), (z,Z, 10), (w,W, 11), respectively. Let T0 = X1 ∪ x1y ∪ yz1 ∪ Z1 ∪ z1w,
T1 = xy1 ∪ Y1 ∪ y1z ∪ xw1 ∪W1 and Ti = Xi ∪ xiyi ∪ Yi ∪ Zi ∪ ziwi ∪Wi ∪ xiwi for i = 2, . . . , 3k − 6.

Let B0 be a subgraph induced by V(FP0 − FP00 − FP01) and B1 be a subgraph induced by
V(FP1 − FP10 − FP11). Then there exist two internally disjoint paths P3k−5, P3k−4 to connect x and y
in FPk[V(B0) ∪ {x, y}] and two internally disjoint paths P′3k−5, P

′
3k−4 to connect z and w in

FPk[V(B1) ∪ {z,w}]. Let T j = P j ∪ x jz j ∪ P′j for j = 3k − 5 and 3k − 4, where xx j ∈ E(P j) and z j is
corresponding vertex of x j in P′i . Then, T0,T1, . . . ,T3k−4 are 3k − 3 internally disjoint S -trees in
L∗1�FPk−1. See Figure 14(b).

Suppose that d(x, z) ≥ 3. There are 3k − 4 internally disjoint S ′-trees T ′1,T
′
2, . . . ,T

′
3k−4 in FP0

because of the induction hypothesis. Notice that |NFPk(z
0) ∩ NFPk(w

0)| ≤ 2. Let T ′1 be a tree such that
|NT ′1

(z0) ∩ NT ′1
(w0)| = 0. Let z1 ∈ NT ′1

(z0) and w1 ∈ NT ′1
(w0). Then z1 , w1. Let T1 = T ′1 ∪ {zz0,ww0}.

Let S ′′ = {x, y, z,w0}. Since dFP0(z0) = 3k − 3, there are 1 ≤ dT ′i (z
0) ≤ 2 for i ∈ [3k − 4].

Construct 3k − 5 internally disjoint S ′′-trees as follows: T ′′i = (T ′i \ z0) ∪ ziz1
i ∪ z1

i z if NT ′i (z
0) = {zi}

and T ′′i = (T ′i \ z0) ∪ ziz1
i ∪ z1

i z ∪ z jz1
j ∪ z1

jz if NT ′i (z
0) = {zi, z j}, where i = 2, . . . , 3k − 4. Similarly,

construct 3k − 5 internally disjoint S -trees as follows: Ti = (T ′i \ w0) ∪ wiw1
i ∪ w1

i w if NT ′′i (w0) = {wi}

and Ti = (T ′′i \ w0) ∪ wiw1
i ∪ w1

i w ∪ w jw1
j ∪ w1

jw if NT ′′i (w0) = {wi,w j}, where i = 2, . . . , 3k − 4.
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Let T =
⋃3k−4

i=1 Ti, W = NT (z) ∪ NT (w) and T ′′1 be a corresponding tree of T ′1 in FP1. Then, T ′′1 is
a tree in FP1 − W. Let T3k−3 = T ′′1 ∪ xx1 ∪ yy1. Then, T1,T2, . . . ,T3k−3 are 3k − 3 internally disjoint
S -trees in L∗1�FPk−1.

Therefore, T1,T2, . . . ,T3k−1 are 3k − 1 internally disjoint S -trees in FPk.
Giving an algorithm to find out 3k − 1 internally disjoint S -trees in FPk for any S ⊆ V(FPk) with

|S | = 4, it means that κ4(FPk) ≥ 3k − 1.

Algorithm 1 Find out 3k − 1 internally disjoint S -trees in FPk.
Input: An k-dimensional folded Petersen network FPk and four vertices x, y, z,w of FPk.
Output: 3k − 1 internally disjoint {x, y, z,w}-trees T.

1: Initialization: i = 0, S = {x, y, z,w}, T = ∅, Gi = FPk

2: While i < 3k − 1 and Gi is connected do
3: construct an S -tree Ti in Gi such that 1 ≤ dTi(v) ≤ 2 and |{v : dTi(v) = 1}| ≥ 2, where v ∈ S .

Moreover, {u : dTi(u) = 1} ⊆ S
4: T = T ∪ Ti

5: i = i + 1
6: Gi = Gi−1 − (V(Ti−1) \ S )
7: end while
8: return T

Now we give the proof of the main result.
Proof of Theorem 1.2. Since FPk is a 3k-regular graph, there are κ4(FPk) ≤ 3k − 1 as Lemma 2.1.
Next we will show that κ4(FPk) ≥ 3k − 1. Let S = {x, y, z,w} be a set of arbitrary four distinct vertices
in FPk. It suffices to show that there exist 3k − 1 internally disjoint S -trees. The proof of this result
by induction on k. By Lemma 2.3, the statement holds for k = 1. Suppose that the statement holds
in FPk−1 for k ≥ 2. Now consider FPk. Decompose FPk into 10 disjoint sub-folded Petersen graphs
FP0, . . . , FP9, each of which is isomorphic to FPk−1, by removing all crossed edges. We only need to
take into account the following cases because of symmetry.
Case 1. x, y, z and w belong to four distinct sub-folded Petersen graphs.

By Lemma 3.1, the desired 3k − 1 internally disjoint S -trees can be obtained in FPk.
Case 2. x, y, z and w belong to three distinct sub-folded Petersen graphs.

By Lemma 3.2, the desired 3k − 1 internally disjoint S -trees can be obtained in FPk.
Case 3. x, y, z and w belong to two distinct sub-folded Petersen graphs.

By Lemma 3.4, the desired 3k − 1 internally disjoint S -trees can be obtained in FPk.
Case 4. x, y, z and w belong to the same sub-folded Petersen graph.

By Lemma 3.3, the desired 3k − 1 internally disjoint S -trees can be obtained in FPk.
Hence, κ4(FPk) ≥ 3k − 1 and the proof is completed.

Proof of Theorem 1.1. Remember that FPQn,k can be regarded as replacing every vertex of Qn by FPk.
Take the Figure 15 as an example. Since FPQn,k is (n + 3k)-regular, we have κ4(FPQn,k) ≤ n + 3k − 1
by Lemma 2.1. In order to prove κ4(FPQn,k) ≥ n + 3k − 1, it needs to show that there are n + 3k − 1
internally disjoint S -trees in FPQn,k for arbitrary S ⊆ V(FPQn,k) with |S | = 4.
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FPk

FPQ1,k

FPQ2,k

FPk

FPk FPk

FPk FPk

FPk FPk

FPk FPk

FPk FPk

FPk FPk

FPQ3,k

Figure 15. Scheme of FPQ1,k, FPQ2,k and FPQ3,k.

If n = 1. According to Lemma 3.3 and 3.4, it is not hard to see that there exist 3k − 3 internally
disjoint S -trees in K2�FPk−1. That is, κ4(FPQ1,k−1) ≥ 3k − 3. Hence, κ4(FPQ1,k) ≥ 3k.

Suppose that n ≥ 2. When the vertices of S distribute among one copy of FPk. Similar to
Lemma 3.3, the desired n + 3k − 1 internally disjoint S -trees can be found in FPQn,k.

When the vertices of S distribute among two copies of FPk. Since κ(Qn) = n, there are n internally
disjoint paths L∗1, L

∗
2, . . . , L

∗
n connecting arbitrary two vertices of Qn. Similar to Lemma 3.4, we can

find 3k S -trees in L∗1�FPk and n − 1 S -trees in (
⋃n

i=2 L∗i )�FPk such that these n + 3k − 1 S -trees are
internally disjoint.

When the vertices of S distribute among three copies of FPk. Since κ3(Qn) = n − 1, there are
n − 1 internally disjoint path T ∗1 ,T

∗
2 , . . . ,T

∗
n−1 connecting arbitrary three vertices of Qn. Similar to

Lemma 3.2, we can find 3k + 1 S -trees in T ∗1�FPk and n − 2 S -trees in (
⋃n−1

i=2 T ∗i )�FPk such that these
n + 3k − 1 S -trees are internally disjoint.

When the vertices of S distribute among four copies of FPk. Since κ4(Qn) = n − 1, there are
n − 1 internally disjoint path H∗1,H

∗
2, . . . ,H

∗
n−1 connecting arbitrary four vertices of Qn. Similar to

Lemma 3.1, we can find 3k + 1 S -trees in H∗1�FPk and n− 2 S -trees in (
⋃n−1

i=2 H∗i )�FPk such that these
n + 3k − 1 S -trees are internally disjoint.

Therefore, κ4(FPQn,k) = n + 3k − 1.

4. Conclusions

The generalized `-connectivity is a natural generalization of the traditional connectivity and can
serve for measuring the fault tolerance capability of a network. This paper centers on the generalized
4-connectivity of the folded Petersen cube network FPQn,k and shows that κ4(FPQn,k) = n + 3k−1. As
a corollary, κ3(FPQn,k) = n + 3k− 1 is obtained easily. Furthermore, the results κ4(Qn) = κ4(FPQn,0) =

n − 1 and κ4(FPk) = κ4(FPQ0,k) = 3k − 1 can be verified. Sabidussi [29] discussed the classical
connectivity of Cartesian product graphs, in the next work, we would like to research the generalized
4-connectivity of Cartesian product graphs.

Besides, fault tolerance or connectivity is mainly to provide a data to measure the reliability of a
network, but in practical, when a system failure, it is worth considering how to compensate the impact
of the fault and to recover the performance of the system before the failure as far as possible such
that the system runs stably and reliably. Motivated by Alhasnawi et al. [1–4], it needs to design fault
tolerance control to ensure steady-state operation, enhance network’ fault resilience, improve network’
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robust and efficient operation. In future work, we would like to apply graph theory to solve practical
problems.
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