Research article

The generalized 4-connectivity of folded Petersen cube networks

Huifen $\mathbf{G e}^{1}$, Shumin Zhang ${ }^{2,3}$, Chengfu $\mathbf{Y e}^{2,3, *}$ and Rongxia $\mathbf{H a o}^{4}$
${ }^{1}$ School of Computer, Qinghai Normal University, Xining 810008, Qinghai, China
${ }^{2}$ School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China
${ }^{3}$ Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, China
${ }^{4}$ Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
* Correspondence: Email: yechf@qhnu.edu.cn.

Abstract

The generalized ℓ-connectivity $\kappa_{\ell}(G)$ of a graph G is a generalization of classical connectivity $\kappa(G)$ with $\kappa_{2}(G)=\kappa(G)$. It serves to measure the capability of connection for any ℓ vertices. The folded Petersen cube network $F P Q_{n, k}$ can be used to model the topological structure of a communication-efficient multiprocessor. This paper shows that the generalized 4-connectivity of the folded Petersen cube network $F P Q_{n, k}$ is $n+3 k-1$. As a corollary, the generalized 3-connectivity of $F P Q_{n, k}$ also is obtained and the results on the generalized 4-connectivity of hypercube Q_{n} and folded Petersen graph $F P_{k}$ can be verified. These conclusions provide a foundation for studying the generalized 4-connectivity of Cartesian product graphs.

Keywords: generalized 4-connectivity; folded Petersen cube networks; Cartesian product
Mathematics Subject Classification: 05C05, 05C40, 05C76, 68R10

1. Introduction

As usual, the topological structure of an interconnection network is regarded as a graph $G=(V, E)$, in which vertices correspond to processors and edges represent communication links between processors. The fault tolerance is one of the most important factors in the design and analysis of an interconnection network and it can be measured by the connectivity of a graph. If the connectivity of a network is larger, then its fault tolerance is higher. The traditional connectivity $\kappa(G)$ of a graph G is defined as the minimum number of vertices whose deletion results in a disconnected graph. An excellent theorem of Whitney [32] provided an equivalent statement about the definition of the connectivity. That is, for any 2 -subset $S=\{u, v\} \subseteq V(G)$, if $\kappa(S)$ denotes the maximum number of internally disjoint paths between u and v in G, then $\kappa(G)=\min \{\kappa(S): S \subseteq V(G),|S|=2\}$. Clearly,
$\kappa(G)$ reflects the connectivity between any two processors. To measure the connectivity capability of more processors, Chartrand et al. [6] and Hager et al. [11] introduced independently the concept of the generalized connectivity of a graph by generalizing the equivalent definition of connectivity.

Let G be a connected graph with order n and ℓ be an integer such that $2 \leq \ell \leq n$. For $S \subseteq V(G)$, a tree T in G is called an S-tree if $S \subseteq V(T)$. Let $\kappa(S)$ denote the maximum number r of edge-disjoint S-trees T_{1}, \ldots, T_{r} satisfying $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for any two distinct integers $i, j \in\{1, \ldots, r\}$. The generalized ℓ-connectivity $\kappa_{\ell}(G)$ of G is defined as $\min \{\kappa(S): S \subseteq V(G),|S|=\ell\}$. Actually, $\kappa_{2}(G)$ is exactly $\kappa(G)$.

Though there are numerous results about the generalized ℓ-connectivity over the past years, for general integer ℓ, the exact values of $\kappa_{\ell}(G)$ are known for only a small class of graphs: complete graph [7], complete bipartite graph [16] and complete equipartition 3-partite graph [18]. Meanwhile, for a given graph G, any fixed integer $k \geq 2$ and a subset S of $V(G)$, the decision problem whether $\kappa(S) \geq k$ is $N P$-complete [19]. The upper and lower bounds of the generalized 3-connectivity of a graph $[21,25]$ and of Cartesian (Lexicographic) product of two graphs [13, 14, 26] were investigated, and extremal problems were studied in [17,22]. The generalized 3-connectivity of some graph classes are known, including Cayley graphs [20,31], star graphs and bubble-sort graphs [23], alternating group graphs and (n, k)-star graphs [34], k-ary n-cubes, split-star graphs and bubble-sort star graphs [37], (n, k)-bubble sort graphs [38], etc. We refer the readers to [15,27] for more details.

Unfortunately, the results of the generalized 4-connectivity are less known. Only hypercubes [24], dual cubes [35], exchanged hypercubes [33], (n, k)-star graphs [12], hierarchical cubic networks [36] have been studied.

The main focus of this paper is to determine the generalized 4-connectivity of the folded Petersen cube networks $F P Q_{n, k}$. The following result is obtained.

Theorem 1.1. Let k, n be two integers. Then $\kappa_{4}\left(F P Q_{n, k}\right)=n+3 k-1$.
Theorem 1.1 implies that if $k=0$, then $\kappa_{4}\left(F P Q_{n, 0}\right)=n-1$, which coincides the value of $\kappa_{4}\left(Q_{n}\right)$. The key to prove Theorem 1.1 is Theorem 1.2.

Theorem 1.2. Let $F P_{k}$ be a k-dimensional folded Petersen graph. Then $\kappa_{4}\left(F P_{k}\right)=3 k-1$.
For a regular graph, the following lemma is useful.
Lemma 1.1. [24] Let G be an r-regular graph. If $\kappa_{k}(G)=r-1$, then $\kappa_{k-1}(G)=r-1$, where $k \geq 4$.
Combining Theorem 1.1 and Lemma 1.1, the following corollary is an immediate consequence.
Corollary 1.1. Let k, n be two integers. Then $\kappa_{3}\left(F P Q_{n, k}\right)=n+3 k-1$.
For helping readers to understand the proof process, a flow chart in Figure 1 is presented to illustrate the relationship between different lemmas, theorems and corollaries.

Figure 1. Flow chart.

2. Preliminaries

This section introduces some basic notations and results that will be used throughout the paper. All graphs considered in this paper are connected, simple, undirected, finite and for the notation and terminology not defined refer to [5].

2.1. Basic notations and lemmas

Let $G=(V, E)$ be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex v of G, we use $N_{G}(v)$ to denote the set of neighbors of v in G, and the degree of v is $d_{G}(v)=\left|N_{G}(v)\right|$. The minimum degree and the maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. A graph G is r-regular if $\delta(G)=\Delta(G)=r$. For two vertices $u, v \in V(G)$, a (u, v)-path is denoted by $P_{u v}$ and the length of a shortest (u, v)-path is called the distance between u and v, denoted by $d_{G}(u, v)$. A subgraph of G is a graph $H=\left(V^{\prime}, E^{\prime}\right)$ such that $V^{\prime}(H) \subseteq V(G)$ and $E^{\prime}(H) \subseteq E(G)$. If $V^{\prime}(H)=V(G)$, then H is called a spanning subgraph of G. The subgraph of G induced by V^{\prime} is denoted by $G\left[V^{\prime}\right]$. Let $[b]=\{1, \ldots, b\}$ for a given integer b.

Lemma 2.1. [21] If there are two adjacent vertices of degree δ, then $\kappa_{\ell}(G) \leq \delta-1$ for $3 \leq \ell \leq|V(G)|$.
Theorem 2.1. (Menger's theorem [5]) A graph G is r-connected if and only if any two distinct vertices of G are connected by at least r internally disjoint paths.

Lemma 2.2. (Fan Lemma [5]) Let G be an r-connected graph, x be a vertex of G, and let $Y \subseteq V(G) \backslash\{x\}$ be a set of at least r vertices of G. Then there exists an r-fan in G from x to Y, that is, there exists a family of r internally disjoint (x, Y)-paths whose terminal vertices are distinct in Y.

2.2. The folded Petersen cube networks

The Cartesian product of graphs is an important tool to construct a bigger network. Recall that the Cartesian product of two graphs G and H, denoted by $G \square H$, is a graph with the vertex set $V(G) \times V(H)$ such that (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent if and only if either $g=g^{\prime}$ and $h h^{\prime} \in E(H)$, or $h=h^{\prime}$ and $g g^{\prime} \in E(G)$.

The Petersen graph \mathbf{P} with a vertex set $\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \mathbf{9}\}$ has an outer 5-cycle and an inner 5-cycle are joined by a perfect matching (Figure 2(a) depicts \mathbf{P} with decimal vertex-labeling). It is a 3-regular

3-connected graph with diameter 2. The k-dimensional folded Petersen graph $F P_{k}$ is constructed by the k-th iteration of Cartesian product on Petersen graph \mathbf{P}, defined as $F P_{k}=\mathbf{P} \square \cdots \square \mathbf{P}=(V, E)$, where $V=\left\{x_{1} \cdots x_{k}: x_{i} \in\{0,1, \ldots, 9\}, 1 \leq i \leq k\right\} \quad$ and $E=\left\{\left(x_{1} \cdots x_{i-1} x_{i} x_{i+1} \cdots x_{k}, x_{1} \cdots x_{i-1} y x_{i+1} \cdots x_{k}\right): y \in\{0,1, \ldots, 9\}, d_{\mathbf{P}}\left(y, x_{i}\right)=1\right.$ and $\left.1 \leq i \leq k\right\}$. As depicted in Figure $1(b), F P_{2}$ is obtained from \mathbf{P} by replacing each of its vertices by \mathbf{P}, denoted by $\mathbf{P}^{0}, \mathbf{P}^{1}, \ldots, \mathbf{P}^{9}$, respectively, moreover, between \mathbf{P}^{i} and \mathbf{P}^{j} have a perfect matching for $d_{\mathbf{P}}(i, j)=1$. In fact, for $k \geq 2, F P_{k}$ is obtained from \mathbf{P} by replacing each of its vertices by $F P_{k-1}$, and we denote the 10 connected subgraphs by $F P_{k}^{i \cdot 0}, F P_{k}^{i: 1}, \ldots, F P_{k}^{i .9}$, respectively, where $F P_{k}^{i . j}=F P_{k}\left[\left\{x_{1} \cdots x_{k} \in V\left(F P_{k}\right), x_{i}=j\right\}\right]$. Clearly, $F P_{k}^{i . j} \cong F P_{k-1}$. For convenience, $F P^{j}$ denotes $F P_{k}^{1: j}$ for $j \in\{0,1, \ldots, 9\}$ in the rest of this paper. It is easy to see that the subgraph induced by $V\left(F P^{i}\right) \cup V\left(F P^{j}\right)$ is isomorphic to $F P_{k-1} \square K_{2}$ for $d_{\mathbf{P}}(i, j)=1$, and the edges between $V\left(F P^{i}\right)$ and $V\left(F P^{j}\right)$ are called the crossed edges.

Figure 2. (a) The Petersen graph \mathbf{P}; (b) Scheme of $F P_{2}$.

For any $x \in V\left(F P^{i}\right)$, we call that $x^{i_{j}}$ is a corresponding vertex of x in $F P^{i_{j}}$ if x and $x^{i_{j}}$ differ in exactly the first digit. In particular, a corresponding vertex $x^{i_{j}}$ of x is an outside neighbor of x if $d_{\mathbf{P}}\left(i, i_{j}\right)=1$. Apparently, there are exactly three outside neighbors of x. Two graphs G^{\prime} and $G^{\prime \prime}$ are corresponding if their vertices correspond one to one and $G^{\prime} \cong G^{\prime \prime}$. Furthermore, $F P_{k}$ is a $3 k$-regular $3 k$-connected graph with diameter $2 k$ and order 10^{k}, also vertex and edge symmetric. More details see [8, 10].

The folded Petersen cube network $F P Q_{n, k}=F P_{k} \square Q_{n}$ with $10^{k} \times 2^{n}$ vertices is introduced by Öhring and Das [28], where Q_{n} is an n-dimensional hypercube and it can be regarded as n-th iteration of Cartesian product on K_{2}. In particular, $F P Q_{0, k}=F P_{k}$ and $F P Q_{n, 0}=Q_{n}$. There are a lot of topological structures like linear arrays, rings, meshes, hypercubes can be embedded into it. Some research findings on the folded Petersen cube networks have been published for the past several years, see $[9,28,30]$.

The following result will be used to prove Theorem 1.2.
Lemma 2.3. Let S be a vertex subset of the Petersen graph \mathbf{P} with $|S|=4$. Then there exist two internally disjoint S-trees in \mathbf{P}.

Proof. Let \mathbf{P} be a Petersen graph, $S=\{x, y, z, w\} \subseteq V(\mathbf{P})$ and $G=\mathbf{P}[S]$. Then $d_{G}(v) \leq 3$ for arbitrary $v \in V(G)$. Since \mathbf{P} is vertex symmetric, assume that $d_{G}(x)=\Delta(G)$. If $d_{G}(x)=3$, then $N_{G}(x)=\{y, z, w\}$. Two internally disjoint S-trees are demonstrated in Figure 3(a). If $d_{G}(x)=2$, without loss of generality, let $N_{G}(x)=\{y, z\}$. It suffices to consider two cases and the required S-trees
are demonstrated in Figure $3(b)$ and Figure $3(c)$, respectively. If $d_{G}(x)=1$, assume that $N_{G}(x)=\{y\}$, it suffices to consider two cases and the required S-trees are demonstrated in Figure 3(d) and Figure 3(e), respectively. If $d_{G}(x)=0$, Figure $2(f)$ demonstrates two internally disjoint S-trees.

Figure 3. Illustrations of the proof of Lemma 2.3.

3. Main results

In this section, we mainly determine $\kappa_{4}\left(F P_{k}\right)$. First, propose the general idea of the proof $\kappa_{4}\left(F P_{k}\right) \geq$ $3 k-1$. From the definition of $\kappa_{4}\left(F P_{k}\right)$, it suffices to show that $\kappa_{F P_{k}}(S) \geq 3 k-1$ for arbitrary $S \subseteq$ $V\left(F P_{k}\right)$ with $|S|=4$. Furthermore, according to the definition of $\kappa_{F P_{k}}(S)$, find out $3 k-1$ internally disjoint S-trees in $F P_{k}$. Let S be a set of arbitrary four distinct vertices in $F P_{k}$. Recall that $F P_{k}$ can be decomposed into 10 disjoint sub-folded Petersen graphs $F P^{0}, F P^{1}, \ldots, F P^{9}$, each of which is isomorphic to $F P_{k-1}$ by removing all crossed edges.

For arbitrary four vertices $v_{0}, v_{1}, v_{2}, v_{3}$ in \mathbf{P}, by Lemma 2.3, there are two internally disjoint $\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$-trees T_{1}^{*} and T_{2}^{*} in \mathbf{P}. At least one of the trees T_{1}^{*} and T_{2}^{*} contains a vertex u different from $v_{0}, v_{1}, v_{2}, v_{3}$. Without loss of generality, let T_{2}^{*} be such a tree. Clearly, $\left(T_{1}^{*} \cup T_{2}^{*}\right) \square F P_{k-1}$ is a subgraph of $F P_{k}$. If we can prove that $\kappa_{T_{1}^{*} \square F P_{k-1}}(S) \geq 3 k-2$ and find out an S-tree in $T_{2}^{*} \square F P_{k-1}$, then $\kappa_{F P_{k}}(S) \geq \kappa_{T_{1}^{*} \square F P_{k-1}}(S)+1 \geq 3 k-1$. In this case, the problem is converted into finding out $3 k-2$ internally disjoint S-trees in $T_{1}^{*} \square F P_{k-1}$ and an S-tree in $T_{2}^{*} \square F P_{k-1}$ such that all of the S-trees are internally disjoint.

Observation 3.1. For arbitrary three vertices v_{0}, v_{1}, v_{2} in \mathbf{P}, one of the following holds.
(i) If $\left\{v_{0}, v_{1}, v_{2}\right\}$ is an isolated set, then there are three internally disjoint $\left\{v_{0}, v_{1}, v_{2}\right\}$-trees $T_{1}^{*}, T_{2}^{*}, T_{3}^{*}$ in \mathbf{P}. Moreover, there exists a vertex u_{i} with degree 3 different from v_{0}, v_{1}, v_{2} in T_{i}^{*} for $i=1,2,3$.
(ii) If $\left\{v_{0}, v_{1}, v_{2}\right\}$ is not an isolated set, then there are a C_{5} and a $\left\{v_{0}, v_{1}, v_{2}\right\}$-tree T_{3}^{*} in \mathbf{P} such that $v_{0}, v_{1}, v_{2} \in V\left(C_{5}\right)$ and $V\left(C_{5}\right) \cap V\left(T_{3}^{*}\right)=\left\{v_{0}, v_{1}, v_{2}\right\}$. Moreover, there exists a vertex u with degree 3 different from v_{0}, v_{1}, v_{2} in T_{3}^{*}.

For Observation $3.1(i)$, it is easy to see that $\left(\bigcup_{i=1}^{3} T_{i}^{*}\right) \square F P_{k-1}$ is a subgraph of $F P_{k}$ (see Figure 4). Notice that T_{1}^{*}, T_{2}^{*} and T_{3}^{*} are internally disjoint in \mathbf{P}, if we can prove that $\kappa_{T_{1}^{*} \square F P_{k-1}}(S) \geq 3 k-3$, find out an S-tree in $T_{2}^{*} \square F P_{k-1}$ and another S-tree in $T_{3}^{*} \square F P_{k-1}$, then $\kappa_{F P_{k}}(S) \geq \kappa_{T_{1}^{*} \square F P_{k-1}}(S)+2 \geq 3 k-1$.

In this case, the problem is converted into finding out $3 k-3$ internally disjoint S-trees in $T_{1}^{*} \square F P_{k-1}$, an S-tree in $T_{2}^{*} \square F P_{k-1}$ and another S-tree in $T_{3}^{*} \square F P_{k-1}$ such that all of the S-trees are internally disjoint.

Figure 4. An example for $\left(\bigcup_{i=1}^{3} T_{i}^{*}\right) \square F P_{k-1}$ is a subgraph of $F P_{k}$.

For Observation 3.1(ii), let $C=C_{5}$, it can be seen that $\left(C \cup T_{3}^{*}\right) \square F P_{k-1}$ is a subgraph of $F P_{k}$ (see Figure 5). If we can prove that $\kappa_{C \square F P_{k-1}}(S) \geq 3 k-2$, and find out an S-tree in $T_{3}^{*} \square F P_{k-1}$, then $\kappa_{F P_{k}}(S) \geq \kappa_{C \square F P_{k-1}}(S)+1 \geq 3 k-1$. In this case, the problem is converted into finding out $3 k-2$ internally disjoint S-trees in $C \square F P_{k-1}$ and an S-tree in $T_{3}^{*} \square F P_{k-1}$ such that all of the S-trees are internally disjoint.

Figure 5. An example for $\left(C \cup T_{3}^{*}\right) \square F P_{k-1}$ is a subgraph of $F P_{k}$.
For arbitrary two vertices v_{0}, v_{1} in \mathbf{P}, by Theorem 2.1, there are three internally disjoint (v_{0}, v_{1})-paths L_{1}^{*}, L_{2}^{*} and L_{3}^{*} in \mathbf{P} because the Petersen graph \mathbf{P} is 3-connected. Note that $\bigcup_{i=1}^{3} L_{i}^{*}$ is a subgraph of \mathbf{P} and $\left(\bigcup_{i=1}^{3} L_{i}^{*}\right) \square F P_{k-1}$ is a subgraph of $F P_{k}$ (see Figure 6). If we can prove that $\kappa_{L_{1}^{*} \square F P_{k-1}}(S) \geq 3 k-3$,
find out an S-tree in $L_{2}^{*} \square F P_{k-1}$ and another S-tree in $L_{3}^{*} \square F P_{k-1}$, then $\kappa_{F P_{k}}(S) \geq \kappa_{\left(\cup_{i=1}^{3} L_{i}^{*} \square \square P_{k-1}\right.}(S) \geq$ $\kappa_{L!}^{*} \square F P_{k-1}(S)+2 \geq 3 k-1$. In this case, the problem is converted into finding out $3 k-3$ internally disjoint S-trees in $L_{1}^{*} \square F P_{k-1}$, an S-tree in $L_{2}^{*} \square F P_{k-1}$ and another S-tree in $L_{3}^{*} \square F P_{k-1}$ such that all of the S-trees are internally disjoint.

Figure 6. An example for $\left(\bigcup_{i=1}^{3} L_{i}^{*}\right) \square F P_{k-1}$ is a subgraph of $F P_{k}$.
The following four lemmas will be helpful to main result.
Lemma 3.1. Let $F P_{k}$ be a k-dimensional folded Petersen graph and $S=\{x, y, z, w\}$ be a set of arbitrary four distinct vertices in $F P_{k}$ for $k \geq 2$. If the vertices in S belong to four sub-folded Petersen graphs of $F P_{k}$, then there are $3 k-1$ internally disjoint S-trees in $F P_{k}$.
Proof. Let $F P^{0}, F P^{1}, \ldots, F P^{9}$ be 10 disjoint sub-folded Petersen graphs of $F P_{k}$. Since the vertices in S belong to four sub-folded Petersen graphs of $F P_{k}$, there exist $v_{0}, v_{1}, v_{2}, v_{3} \in\{0,1, \ldots, 9\}$ such that they are mutual distinct and $x \in V\left(F P^{v_{0}}\right), y \in V\left(F P^{v_{1}}\right), z \in V\left(F P^{v_{2}}\right)$ and $w \in V\left(F P^{v_{3}}\right)$.

For $v_{0}, v_{1}, v_{2}, v_{3} \in V(\mathbf{P})$, there exist two internally disjoint $\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$-trees T_{1}^{*} and T_{2}^{*} in \mathbf{P} by Lemma 2.3. At least one of the trees T_{1}^{*} and T_{2}^{*} contains a vertex c different from $v_{0}, v_{1}, v_{2}, v_{3}$, say T_{2}^{*} is such a tree. Since $F P^{c}$ is connected, there exists an $\left\{x^{c}, y^{c}, z^{c}, w^{c}\right\}$-tree $T_{3 k-2}^{\prime}$ in $F P^{c}$. There is a unique path to connect arbitrary two vertices in T_{2}^{*}. That is, we can find the corresponding path to connect arbitrary two vertices in $T_{2}^{*} \square F P_{k-1}$. Let $T_{3 k-2}=T_{3 k-2}^{\prime} \cup P_{x x^{c}} \cup P_{y y^{c}} \cup P_{z z^{c}} \cup P_{w w^{c}}$.

Let $x_{0}=x$. Choose $3 k-2$ distinct vertices $x_{0}, x_{1}, x_{2}, \ldots, x_{3 k-3}$ from $F P^{v_{0}}$ being X such that $y^{v_{0}}, z^{v_{0}}$ and $w^{\nu_{0}}$ belong to X and $|X|=3 k-2$. Without loss of generality, assume that $x_{r}=y^{\nu_{0}}, x_{s}=z^{v_{0}}, x_{t}=w^{\nu_{0}}$ for $r, s, t \in\{0,1, \ldots, 3 k-3\}$. Let $Y=\bigcup_{i=0}^{3 k-3} y_{i}, Z=\bigcup_{i=0}^{3 k-3} z_{i}$ and $W=\bigcup_{i=0}^{3 k-3} w_{i}$ be the corresponding vertices of vertices of X in $F P^{v_{1}}, F P^{v_{2}}$ and $F P^{v_{3}}$, respectively, where $y_{i}=x_{i}^{v_{1}}, z_{i}=x_{i}^{v_{2}}$ and $w_{i}=x_{i}^{v_{3}}$ for each $i \in\{0,1, \ldots, 3 k-3\}$. Then $|Y|=|Z|=|W|=3 k-2$. By Lemma 2.2 and $\kappa\left(F P_{k-1}\right)=3 k-3$, there are $3 k-3$ internally disjoint paths $A_{1}, A_{2}, \ldots, A_{3 k-3}$ from a to $A \backslash\{a\}$ in $F P^{v_{j}}$ for $(a, A, j)=$ $(x, X, 0),(y, Y, 1),(z, Z, 2),(w, W, 3)$, respectively. Since there is a unique path to connect arbitrary two vertices in T_{1}^{*}, we can find the corresponding path to connect corresponding vertices in $T_{1}^{*} \square F P_{k-1}$. Construct $3 k-2$ internally disjoint S-trees in $T_{1}^{*} \square F P_{k-1}$ as follows: $T_{i}=X_{i} \cup P_{x_{i} y_{i}} \cup Y_{i} \cup P_{y_{i z i}} \cup Z_{i} \cup$ $P_{z_{i} w_{i}} \cup W_{i}$ for $i \in\{0,1, \ldots, 3 k-3\}$, where $X_{0}=\left\{x_{0}\right\}=\{x\}, Y_{r}=\left\{y_{r}\right\}=\{y\}, Z_{s}=\left\{z_{s}\right\}=\{z\}$ and $W_{t}=\left\{w_{t}\right\}=\{w\}$. Then, $T_{0}, T_{1}, \ldots, T_{3 k-2}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$. See Figure 7.

Figure 7. Illustrations of Lemma 3.1.

Lemma 3.2. Let $F P_{k}$ be a k-dimensional folded Petersen graph and $S=\{x, y, z, w\}$ be a set of arbitrary four distinct vertices in $F P_{k}$ for $k \geq 2$. If the vertices in S belong to three sub-folded Petersen graphs of $F P_{k}$, then there are $3 k-1$ internally disjoint S-trees in $F P_{k}$.

Proof. Let $F P^{0}, F P^{1}, \ldots, F P^{9}$ be 10 disjoint sub-folded Petersen graphs of $F P_{k}$. Since the vertices in S belong to three sub-folded Petersen graphs of $F P_{k}$, there exist $v_{0}, v_{1}, v_{2} \in\{0,1, \ldots, 9\}$ such that $x, y \in V\left(F P^{v_{0}}\right), z \in V\left(F P^{v_{1}}\right)$ and $w \in V\left(F P^{v_{2}}\right)$ by the symmetry of $F P_{k}$.

Since $F P_{k-1}$ is (3k-3)-connected, there exist $3 k-3$ internally disjoint (x, y)-paths $P_{1}, P_{2}, \ldots, P_{3 k-3}$ in $F P^{v_{0}}$. Choose $x_{i} \in V\left(P_{i}\right)$ such that $x_{i} \neq x$. Let $z_{i}=x_{i}^{v_{1}}$ and $w_{i}=x_{i}^{v_{2}}$ for $i \in[3 k-3]$. By Lemma 2.2, there are $3 k-3$ paths $P_{z z_{1}}, \ldots, P_{z z 3 k-3}$ and $3 k-3$ paths $P_{w w_{1}}, \ldots, P_{w w_{3 k-3}}$ in $F P^{v_{1}}$ and $F P^{v_{2}}$, respectively. It is possible that one of the paths $P_{z z_{i}}\left(\right.$ resp. $\left.P_{w w_{i}}\right)$ is a single vertex.
Case 1. $\left\{v_{0}, v_{1}, v_{2}\right\}$ is an isolated set.
By Observation $3.1(i)$, there exists a $\left\{v_{0}, v_{1}, v_{2}\right\}$-tree T_{1}^{*} which contains a vertex a with degree 3 different from v_{0}, v_{1}, v_{2} in \mathbf{P}. Moreover, there are a unique (v_{0}, a)-path $P_{v_{0} a}$, a unique (v_{1}, a)-path $P_{v_{1} a}$ and a unique (v_{2}, a)-path $P_{v_{2} a}$ in T_{1}^{*}. It is not hard to find $3 k-3$ internally disjoint S-trees in $T_{1}^{*} \square F P_{k-1}$, that is, $T_{i}=P_{i} \cup P_{x_{i} i_{i}^{a}} \cup P_{z z_{i}} \cup P_{z_{i} x_{i}^{a}} \cup P_{w w_{i}} \cup P_{w_{i} x_{i}^{a}}$ for $i \in[3 k-3]$, where $P_{x_{i} i_{i}^{a}} \cong P_{v_{0} a}, P_{z_{i} i_{i}^{a}} \cong P_{v_{1} a}$ and $P_{w_{i} i_{i}^{a}} \cong P_{v_{2} a}$.

Except T_{1}^{*}, there are two internally disjoint $\left\{v_{0}, v_{1}, v_{2}\right\}$-trees T_{2}^{*} and T_{3}^{*} in \mathbf{P}, T_{2}^{*} and T_{3}^{*} contains a vertex with degree 3 different from v_{0}, v_{1} and v_{2}, denoted by b and c, respectively. Since $F P^{b}$ is connected, there exists an $\left\{x^{b}, y^{b}, z^{b}, w^{b}\right\}$-tree $T_{3 k-2}^{\prime}$ in $F P^{b}$ (resp. $\left\{x^{c}, y^{c}, z^{c}, w^{c}\right\}$-tree $T_{3 k-1}^{\prime}$ in $F P^{c}$). By the definition of $F P_{k}$, there exist the paths $P_{x x^{b}}, P_{y y^{b}}, P_{z z^{b}}, P_{w w^{b}}$ (resp. $P_{x x^{c}}, P_{y y^{c}}, P_{z z^{c}}, P_{w w^{c}}$) in $F P_{k}$ such that $P_{x x^{b}} \cong P_{y y^{b}} \cong P_{v_{0} b}, P_{z z^{b}} \cong P_{v_{1} b}, P_{w w^{b}} \cong P_{v_{2} b}\left(\right.$ resp. $P_{x x^{c}} \cong P_{y y^{c}} \cong P_{v_{0} c}, P_{z z^{c}} \cong P_{v_{1} c}, P_{w w^{c}} \cong P_{v_{2} c}$) where $P_{v_{0} b}, P_{v_{1} b}, P_{v_{2} b}$ belong to T_{2}^{*} (resp. $P_{v_{0} c}, P_{v_{1} c}, P_{v_{2} c}$ belong to T_{3}^{*}). Let $T_{3 k-2}=T_{3 k-2}^{\prime} \cup P_{x x^{b}} \cup P_{y y^{b}} \cup$ $P_{z z^{b}} \cup P_{w w^{b}}$ (resp. $T_{3 k-1}=T_{3 k-1}^{\prime} \cup P_{x x^{c}} \cup P_{y y^{c}} \cup P_{z z^{c}} \cup P_{w w^{c}}$). Then, $T_{1}, T_{2}, \ldots, T_{3 k-1}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$. See Figure 8.

Figure 8. Illustrations of Case 1 in Lemma 3.2.
Case 2. $\left\{v_{0}, v_{1}, v_{2}\right\}$ is not an isolated set.
By Observation 3.1(ii), there exists a cycle C for $C=C_{5}$ and a $\left\{v_{0}, v_{1}, v_{2}\right\}$-tree T_{3}^{*} in \mathbf{P} such that $V(C) \cap V\left(T_{3}^{*}\right)=\left\{v_{0}, v_{1}, v_{2}\right\}$. Let R be a shorter path containing vertices v_{0}, v_{1}, v_{2} in C, say $\left(v_{0}, v_{2}\right)$-path being such a path. Then $R=P_{v_{0} v_{1}} \cup P_{v_{1} v_{2}}$. Let $T_{i}=P_{i} \cup P_{x_{i z i}} \cup P_{z z_{i}} \cup P_{z_{i} w_{i}} \cup P_{w w_{i}}$ for $i \in[3 k-3]$, where $P_{x_{i z i}} \cong P_{v_{0} v_{1}}$ and $P_{z_{i} w_{i}} \cong P_{v_{1} v_{2}}$.

Figure 9. Illustrations of Case 2 in Lemma 3.2.
Clearly, R is a $\left\{v_{0}, v_{1}, v_{2}\right\}$-tree with $|V(R)| \leq 4$ and there exists another (v_{0}, v_{2})-path R^{\prime} containing a non-end vertex d, then $R^{\prime}=P_{v_{0} d} \cup P_{v_{2} d}$. Since $F P^{d}$ is connected, there exists an $\left\{x^{d}, y^{d}, z^{d}, w^{d}\right\}$-tree $T_{3 k-2}^{\prime}$ in $F P^{d}$. If $z^{v_{0}} \notin \bigcup_{i=1}^{3 k-3} V\left(P_{i}\right)$ (see Figure $9(a)$), then $z^{v_{0}} \in P_{z z^{d}}$, where $P_{z z^{d}} \cong P_{v_{0} v_{1}} \cup P_{v_{0} d}$. Let $T_{3 k-2}=T_{3 k-2}^{\prime} \cup P_{x x^{d}} \cup P_{y y^{d}} \cup P_{z z^{d}} \cup P_{w w^{d}}$, where $P_{x x^{d}} \cong P_{y y^{d}} \cong P_{v_{0} d}$ and $P_{w w^{d}} \cong P_{v_{2} d}$. If $z^{v_{0}} \in \bigcup_{i=1}^{3 k-3} V\left(P_{i}\right)$ (see Figure $9(b)$), without loss of generality, assume that $z^{v_{0}} \in P_{1}$ and $x_{1}=z^{v_{0}}$, then the path $P_{z z_{1}}$ is a single vertex. Let $z_{3 k-2}=y^{v_{1}}$. Then there exists a path $P_{z z 3 k-2}$ in $F P^{v_{1}}$. Let $T_{3 k-2}=T_{3 k-2}^{\prime} \cup P_{x x^{d}} \cup P_{y y^{d}} \cup$ $P_{y z 3 k-2} \cup P_{z z 3 k-2} \cup P_{w w^{d}}$, where $P_{x x^{d}} \cong P_{y y^{d}} \cong P_{v_{0} d}, P_{y z 3 k-2} \cong P_{v_{0} v_{1}}$ and $P_{w w^{d}} \cong P_{v_{2} d}$. The S-tree $T_{3 k-1}$ can be similarly constructed as $T_{3 k-1}$ of Case 1 . Then, $T_{1}, T_{2}, \ldots, T_{3 k-1}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$.

Lemm 3.3. Let $F P_{k}$ be a k-dimensional folded Petersen graph and $S=\{x, y, z, w\}$ be a set of arbitrary four distinct vertices in $F P_{k}$ for $k \geq 2$. If the vertices in S belong to the same sub-folded Petersen graphs of $F P_{k}$, then there are $3 k-1$ internally disjoint S-trees in $F P_{k}$.

Proof. Let $F P^{0}, F P^{1}, \ldots, F P^{9}$ be 10 disjoint sub-folded Petersen graphs of $F P_{k}$. The vertices in S belong to the same sub-folded Petersen graph, without loss of generality, suppose that $x, y, z, w \in$ $V\left(F P^{0}\right)$. Since $F P^{0} \cong F P_{k-1}$, by induction hypothesis, we have $\kappa_{4}\left(F P_{k-1}\right) \geq 3 k-4$. Hence, there exist $3 k-4$ internally disjoint S-trees $T_{1}, T_{2}, \ldots, T_{3 k-4}$ in $F P^{0}$. Clearly, there exists an $\left\{x^{1}, y^{1}, z^{1}, w^{1}\right\}$-tree $T_{3 k-3}^{\prime}$ in $F P^{1}$, an $\left\{x^{4}, y^{4}, z^{4}, w^{4}\right\}$-tree $T_{3 k-2}^{\prime}$ in $F P^{4}$ and an $\left\{x^{5}, y^{5}, z^{5}, w^{5}\right\}$-tree $T_{3 k-1}^{\prime}$ in $F P^{5}$. Let $T_{3 k-3}=$ $T_{3 k-3}^{\prime} \cup x x^{1} \cup y y^{1} \cup z z^{1} \cup w w^{1}, T_{3 k-2}=T_{3 k-2}^{\prime} \cup x x^{4} \cup y y^{4} \cup z z^{4} \cup w w^{4}$ and $T_{3 k-1}=T_{3 k-1}^{\prime} \cup x x^{5} \cup y y^{5} \cup z z^{5} \cup w w^{5}$. Then, $T_{1}, T_{2}, \ldots, T_{3 k-1}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$.

Lemma 3.4. Let $F P_{k}$ be a k-dimensional folded Petersen graph and $S=\{x, y, z, w\}$ be a set of arbitrary four distinct vertices in $F P_{k}$ for $k \geq 2$. If the vertices in S belong to two sub-folded Petersen graphs of $F P_{k}$, then there are $3 k-1$ internally disjoint S-trees in $F P_{k}$.

Proof. Let $F P^{0}, F P^{1}, \ldots, F P^{9}$ be 10 disjoint sub-folded Petersen graphs of $F P_{k}$. Suppose that the vertices in S belong to two distinct sub-folded Petersen graphs $F P^{v_{0}}$ and $F P^{v_{1}}$, where $v_{0}, v_{1} \in\{0,1, \ldots, 9\}$. For $v_{0}, v_{1} \in V(\mathbf{P})$, since the Petersen graph \mathbf{P} is 3 -connected, by Theorem 2.1, there are three internally disjoint $\left(v_{0}, v_{1}\right)$-paths L_{1}^{*}, L_{2}^{*} and L_{3}^{*} in \mathbf{P}. For convenience, let $\left|V\left(L_{1}^{*}\right)\right| \leq\left|V\left(L_{2}^{*}\right)\right| \leq\left|V\left(L_{3}^{*}\right)\right|$. It implies that $2 \leq\left|V\left(L_{1}^{*}\right)\right| \leq 3$. We just consider $\left|V\left(L_{1}^{*}\right)\right|=2$ as the discussion for $\left|V\left(L_{1}^{*}\right)\right|=3$ is similar. Without loss of generality, suppose that $v_{0}=\mathbf{0}$ and $v_{1}=\mathbf{1}$. By the symmetry of $F P_{k}$, the following cases be considered.
Case 1. $x, y, z \in V\left(F P^{0}\right)$ and $w \in V\left(F P^{1}\right)$.
Case 1.1. $w^{0} \in\{x, y, z\}$.
Without loss of generality, suppose that $w^{0}=z$. By induction hypothesis and Lemma 1.1, we can find $3 k-4$ internally disjoint $\{x, y, z\}$-trees $T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{3 k-4}^{\prime}$ in $F P^{0}$. Let $\mathcal{T}^{\prime}=\bigcup_{i=1}^{3 k-4} T_{i}^{\prime}$.
Case 1.1.1. $\left|N_{\mathcal{T}}(z) \cap\{x, y\}\right| \leq 1$.
First, construct two internally disjoint S-trees $T_{3 k-2}$ and $T_{3 k-1}$ in $L_{2}^{*} \square F P_{k-1}$ and $L_{3}^{*} \square F P_{k-1}$, respectively. Since $F P^{4}$ and $F P^{5}$ are connected, there exist an $\left\{x^{4}, y^{4}, z^{4}\right\}$-tree $T_{3 k-2}^{\prime}$ in $F P^{4}$ and an $\left\{x^{5}, y^{5}, z^{5}\right\}$-tree $T_{3 k-1}^{\prime}$ in $F P^{5}$, respectively. By the definition of $F P_{k}$, there exist two paths $P_{w z^{4}}$ and $P_{w z^{5}}$ such that $P_{w z^{4}} \cong L_{2}^{*} \backslash\{\mathbf{0}\}$ and $P_{w z^{5}} \cong L_{3}^{*} \backslash\{\mathbf{0}\}$. Let $T_{3 k-2}=T_{3 k-2}^{\prime} \cup x x^{4} \cup y y^{4} \cup z z^{4} \cup P_{w z^{4}}$ and $T_{3 k-1}=T_{3 k-1}^{\prime} \cup x x^{5} \cup y y^{5} \cup z z^{5} \cup P_{w z^{5}}$. Then $T_{3 k-2}$ and $T_{3 k-1}$ are internally disjoint S-trees in $F P_{k}$.

Next, construct $3 k-3$ internally disjoint S-trees $T_{1}, T_{2}, \ldots, T_{3 k-3}$ in $L_{1}^{*} \square F P_{k-1}$ such that $T_{1}, T_{2}, \ldots, T_{3 k-1}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$.

Since $\left|N_{\mathcal{T}^{\prime}}(z) \cap\{x, y\}\right| \leq 1$, without loss of generality, assume that $\left|N_{T_{i}^{\prime}}(z) \cap\{x, y\}\right|=0$ and $d_{T_{i}^{\prime}}(z)=1$ for $i=1,2, \ldots, 3 k-6$. Let $T_{i}=T_{i}^{\prime} \cup z_{i} w_{i} \cup w_{i} w$, where $i \in[3 k-6], z_{i}$ is the neighbor of z in T_{i}^{\prime} and $w_{i}=z_{i}^{1}$. Note that if $\left|N_{\mathcal{T}}(z) \cap\{x, y\}\right|=1$, say $y \in N_{\mathcal{T}}(z)$. By symmetry, consider the following two cases.
Case 1.1.1.1. $d_{T_{3 k-5}^{\prime}}(z)=d_{T_{3 k-4}^{\prime}}(z)=1$.
If $y \notin N_{\mathcal{T}}(z)$, let $T_{i}=T_{i}^{\prime} \cup z_{i} w_{i} \cup w_{i} w$ for $i=3 k-5$ and $3 k-4$, where z_{i} is the neighbor of z in T_{i}^{\prime} and $w_{i}=z_{i}^{1}$. Otherwise, assume that $y \in N_{T_{3 k-5}^{\prime}}(z)$. Let $T_{3 k-5}=T_{3 k-5}^{\prime} \cup z w$ and $T_{3 k-4}=$ $T_{3 k-4}^{\prime} \cup z_{3 k-4} w_{3 k-4} \cup w_{3 k-4} w$. It is clear that $\left|N_{\mathcal{T}^{\prime}}(z) \cap V\left(F P^{0}\right)\right| \leq 3 k-4$, so there is a neighbor $z_{3 k-3}$ of z in $F P^{0}$. Let $\mathcal{T}=\bigcup_{i=1}^{3 k-4} T_{i}$ and $W=N_{\mathcal{T}}(w)$. Then $\left|W \cap V\left(F P^{1}\right)\right| \leq 3 k-4$. Since $F P^{1}$ is $(3 k-3)-$ connected, $F P^{1}-W$ is still connected, thus we can find an $\left\{x^{1}, y^{1}, w, w_{3 k-3}\right\}$-tree $T_{3 k-3}^{\prime}$ in $F P^{1}-W$,
where $w_{3 k-3}=z_{3 k-3}^{1}$. Let $T_{3 k-3}=T_{3 k-3}^{\prime} \cup x x^{1} \cup y y^{1} \cup z z_{3 k-3} \cup z_{3 k-3} w_{3 k-3}$.
Case 1.1.1.2. $d_{T_{3 k-5}^{\prime}}(z)=1$ and $d_{T_{3 k-4}^{\prime}}(z)=2$.
If $y \notin N_{\mathcal{T}}(z)$, let $T_{i}=T_{i}^{\prime} \cup z_{i} w_{i} \cup w_{i} w$ for $i=3 k-5$ and $3 k-4$, where z_{i} is one of the neighbors of z in T_{i}^{\prime} and $w_{i}=z_{i}^{1}$. Let $\mathcal{T}=\bigcup_{i=1}^{3 k-4} T_{i}$ and $W=N_{\mathcal{T}}(w)$. Then $\left|W \cap V\left(F P^{1}\right)\right|=3 k-4$. Since $F P^{1}$ is $(3 k-3)$-connected, $F P^{1}-W$ is still connected, thus there exists an $\left\{x^{1}, y^{1}, w\right\}$-tree $T_{3 k-3}^{\prime}$ in $F P^{1}-W$. Let $T_{3 k-3}=T_{3 k-3}^{\prime} \cup x x^{1} \cup y y^{1} \cup z w$.

Suppose that $y \in N_{\mathcal{T}^{\prime}}(z)$. Without loss of generality, assume that $y \in N_{T_{3 k-5}^{\prime}}(z)$. Clearly, $T_{3 k-5}^{\prime}$ is an (x, z)-path containing y and $T_{3 k-4}^{\prime}$ is an (x, y)-path containing z. That is, $T_{3 k-5}^{\prime}=P_{x y} \cup y z$ and $T_{3 k-4}^{\prime}=P_{x z} \cup P_{z y}$, where the lengths of $P_{x z}$ and $P_{z y}$ are least 2, see Figure 10(a). Let $T_{3 k-5}^{\prime \prime}=P_{x y} \cup P_{z y}$ and $T_{3 k-4}^{\prime \prime}=P_{x z} \cup y z$, see Figure $10(b)$. Actually, $T_{3 k-5}^{\prime}$ and $T_{3 k-4}^{\prime}$ in the case $y \in N_{T_{3 k-4}^{\prime}}(z)$ are $T_{3 k-5}^{\prime \prime}$ and $T_{3 k-4}^{\prime \prime}$, respectively. Let $T_{i}=T_{i}^{\prime \prime} \cup z_{i} w_{i} \cup w_{i} w$ for $i=3 k-5,3 k-4$, where $z_{i} \neq y$ and z_{i} is the neighbor of z in $T_{i}^{\prime \prime}$. Let $\mathcal{T}=\bigcup_{i=1}^{3 k-4} T_{i}$ and $W=N_{\mathcal{T}}(w)$, then $\left|W \cap V\left(F P^{1}\right)\right|=3 k-4$ and $F P^{1}-W$ is still connected, thus there exists an $\left\{x^{1}, y^{1}, w\right\}$-tree $T_{3 k-3}^{\prime}$ in $F P^{1}-W$. Let $T_{3 k-3}=T_{3 k-3}^{\prime} \cup x x^{1} \cup y y^{1} \cup z w$, see Figure 10(c).

Figure 10. Illustrations of $y \in N_{\mathcal{T}}(z)$ in Case 1.1.1.2.

Then, $T_{1}, T_{2}, \ldots, T_{3 k-1}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$.
Case 1.1.2. $\left|N_{\mathcal{T}}(z) \cap\{x, y\}\right|=2$.
Recall the decimal vertex-labeling of the $F P_{k}$. Without loss of generality, assume that $w^{0}=z=$ $000 \ldots 00$. Then $w=100 \ldots 00$. Notice that x, y, z are either in a subgraph of $F P_{k}$ isomorphic to C_{5} or C_{4} when $k \geq 2$.
Case 1.1.2.1. x, y, z are in a subgraph of $F P_{k}$ isomorphic to C_{5}.
By symmetry, assume that $x=000 \ldots 01, y=000 \ldots 04$. If $k \geq 3$, then $x, y, z, w \in F P_{k}^{j: 0}$ for $j \in\{2, \ldots, k-1\}$ when dividing $F P_{k}$ along the j th dimension. Thus, the desired trees can be found similarly to Lemma 3.3. Suppose that $k=2$. Then $x=01, y=04, z=00$ and $w=10$. The desired trees can be found similarly to Lemma 3.2 when dividing $F P_{k}$ along the 2th dimension.
Case 1.1.2.2. x, y, z are in a subgraph of $F P_{k}$ isomorphic to C_{4}.
In this case, $k \geq 3$. Without loss of generality, assume that $x=000 \ldots 01$ and $y=000 \ldots 10$. If $k \geq 4$, then $x, y, z, w \in F P^{j: 0}$ for $j \in\{2, \ldots, k-2\}$ when dividing $F P_{k}$ along the j th dimension. Thus, we can find out desired trees similarly to Lemma 3.3. Suppose that $k=3$. Then $x=001, y=010$, $z=000$ and $w=110$. The desired trees are shown in Figure. 11.

Figure 11. Eight internally disjoint S-trees of $F P_{3}$ in Case 1.1.2.2.
Case 1.2. $w^{0} \notin\{x, y, z\}$.
Case 1.2.1. $\left|N_{F P^{0}}\left(w^{0}\right) \cap\{x, y, z\}\right| \leq 1$.
First, construct $3 k-3$ internally disjoint S-trees $T_{1}, T_{2}, \ldots, T_{3 k-3}$ in $L_{1}^{*} \square F P_{k-1}$ such that $T_{1}, T_{2}, \ldots, T_{3 k-1}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$.

Let $S^{\prime}=\left\{x, y, z, w^{0}\right\}$. Since $F P^{0} \cong F P_{k-1}$, by induction hypothesis, there exist $3 k-4$ internally disjoint S^{\prime}-trees $T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{3 k-4}^{\prime}$ in $F P^{0}$. Since $\left|N_{F P^{0}}\left(w^{0}\right) \cap\{x, y, z\}\right| \leq 1$, without loss of generality, assume that $\left|N_{T_{i}^{\prime}}\left(w^{0}\right) \cap\{x, y, z\}\right|=0$ for $i \in[3 k-4]$ and $i \neq 1$. Let $T_{1}=T_{1}^{\prime} \cup w w^{0}$. Since $d_{F P^{0}}\left(w^{0}\right)=3 k-3$, we have $1 \leq d_{T_{i}^{\prime}}\left(w^{0}\right) \leq 2$ for $i \in[3 k-4]$. For $i=2, \ldots, 3 k-4$, let $T_{i}=\left(T_{i}^{\prime} \backslash w^{0}\right) \cup w_{i} w_{i}^{1} \cup w_{i}^{1} w$ if $N_{T_{i}^{\prime}}\left(w^{0}\right)=\left\{w_{i}\right\}$ and let $T_{i}=\left(T_{i}^{\prime} \backslash w^{0}\right) \cup w_{i} w_{i}^{1} \cup w_{i}^{1} w \cup w_{j} w_{j}^{1} \cup w_{j}^{1} w$ if $N_{T_{i}^{\prime}}\left(w^{0}\right)=\left\{w_{i}, w_{j}\right\}$.

Let $\mathcal{T}=\bigcup_{i=1}^{3 k-4} T_{i}$ and $W=N_{\mathcal{T}}(w)$. Then $\left|W \cap V\left(F P^{1}\right)\right|=3 k-4$. Since $F P^{1}$ is $(3 k-3)$-connected, $F P^{1}-W$ is still connected, thus there exists an $\left\{x^{1}, y^{1}, z^{1}, w\right\}$-tree $T_{3 k-3}^{\prime}$ in $F P^{1}-W$. Let $T_{3 k-3}=$ $T_{3 k-3}^{\prime} \cup x x^{1} \cup y y^{1} \cup z z^{1}$.

Next, construct two internally disjoint S-trees $T_{3 k-2}$ and $T_{3 k-1}$ in $L_{2}^{*} \square F P_{k-1}$ and $L_{3}^{*} \square F P_{k-1}$, respectively. Since \mathbf{P} is a simple graph, there exist two non-end vertices 4 and $\mathbf{5}$ in L_{2}^{*} and L_{3}^{*}, respectively. Clearly, $F P^{4}$ is connected and there exists an $\left\{x^{4}, y^{4}, z^{4}, w^{4}\right\}$-tree $T_{3 k-2}^{\prime}$ in $F P^{4}$. Let $T_{3 k-2}=T_{3 k-2}^{\prime} \cup x x^{4} \cup y y^{4} \cup z z^{4} \cup P_{w w^{4}}$, where $P_{w w^{4}} \cong L_{2}^{*} \backslash\{\mathbf{0}\}$. Similarly, construct $T_{3 k-1}=T_{3 k-1}^{\prime} \cup x x^{5} \cup y y^{5} \cup z z^{5} \cup P_{w w^{5}}$. Then, $T_{1}, T_{2}, \ldots, T_{3 k-1}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$.
Case 1.2.2. $\left|N_{F P^{0}}\left(w^{0}\right) \cap\{x, y, z\}\right| \geq 2$.
Without loss of generality, suppose that $\{x, y\} \subseteq N_{F P^{0}}\left(w^{0}\right)$ and $w^{0}=000 \cdots 00$. Clearly, $w=$ $100 \cdots 00$. Note that x, y, w^{0} are either in a subgraph of $F P_{k}$ isomorphic to C_{5} or C_{4} when $k \geq 2$.
Case 1.2.2.1. x, y, w^{0} are in a subgraph of $F P_{k}$ isomorphic to C_{5}.
Without loss of generality, assume that $x=000 \cdots 01$ and $y=000 \cdots 04$. Let $z=0 z_{2} z_{3} \cdots z_{k-1} z_{k}$. If there exists $j \in\{2, \ldots, k-1\}$ such that $z_{j}=0$, then $x, y, z, w \in F P_{k}^{j: 0}$ when dividing $F P_{k}$ along the j th
dimension. Thus, we can find out desired trees similarly to Lemma 3.3. It suffices to consider the case $z_{j} \neq 0$ for $j=2, \ldots, k-1$.

If $k \geq 3$, then $x, y, w \in V\left(F P_{k}^{2: 0}\right), z \in V\left(F P_{k}^{2: z 2}\right), z^{0}=00 z_{3} \cdots z_{k-1} z_{k} \notin\{x, y, w\}$ and $\mid N\left(z^{0}\right) \cap$ $\{x, y, w\} \mid \leq 1$ when dividing $F P_{k}$ along the 2th dimension. Thus, we can find out desired trees Similarly to case 1.2.1.

Suppose that $k=2$, there are $x=01, y=04, w=10, z=0 z_{2}$ and $z_{2} \notin\{0,1,4\}$. We can find out desired trees similarly to Lemma 3.1 when dividing $F P_{k}$ along the 2th dimension.
Case 1.2.2.2. x, y, w^{0} are in a subgraph of $F P_{k}$ isomorphic to C_{4}.
In this case, $k \geq 3$. Without loss of generality, assume that $x=000 \cdots 01$ and $y=000 \cdots 40$. Let $z=0 z_{2} z_{3} \ldots z_{k-2} z_{k-1} z_{k}$. If there exists $j \in\{2, \ldots, k-2\}$ such that $z_{j}=0$, then $x, y, z, w \in F P_{k}^{j: 0}$ when dividing $F P_{k}$ along the j th dimension. Thus, we can find out desired trees similarly to Lemma 3.3. It suffices to consider the case $z_{2}, z_{3}, \ldots, z_{k-2} \neq 0$.

If $k \geq 4$, we divide $F P_{k}$ along the 2th dimension. Then $x, y, w \in V\left(F P_{k}^{2: 0}\right), z \in V\left(F P_{k}^{2: z 2}\right), z^{0}=$ $00 z_{3} \cdots z_{k-1} z_{k} \notin\{x, y, w\}$ and $\left|N\left(z^{0}\right) \cap\{x, y, w\}\right| \leq 1$ except $z^{0}=0041$. Similarly to case 1.2.1, we can find $3 k-3$ internally disjoint S-trees. When $z^{0}=0041, x=0001, y=0040, w=1000$, assume that $z=0141$ (for $z=0 z_{2} 41$ and $z_{2} \neq 0$ is similar). Clearly, $\left|N\left(z^{0}\right) \cap\{x, y, w\}\right|=2$. The desired trees are shown in Figure 12.

Figure 12. Eleven internally disjoint S-trees of $F P_{4}$ in Case 1.2.2.2.
Suppose that $k=3$, we have $x=001, y=040, w=100, z=0 z_{2} z_{3} \notin\left\{x, y, w^{0}\right\}$. If $z_{2} \notin\{0,4\}$, then $x, w \in F P_{3}^{2: 0}, y \in F P_{3}^{2: 4}$ and $z \in F P_{3}^{2: z_{2}}$ when dividing $F P_{3}$ along the 2 th dimension. Thus, we can find out desired trees similarly to Lemma 3.2. If $z_{3} \notin\{0,1\}$, then $x \in F P_{3}^{3: 1}, y, w \in F P_{3}^{3: 0}$ and $z \in F P_{3}^{3: z 3}$ when dividing $F P_{3}$ along the 3 th dimension. Thus, we can find out desired trees similarly to Lemma 3.2. Suppose $z_{2} \in\{0,4\}$ and $z_{3} \in\{0,1\}$. Since $z \neq x, y, w$, then $z=041$. The desired trees
are shown in Figure 13.

Figure 13. Eight internally disjoint S-trees of $F P_{3}$ in Case 1.2.2.2.
Case 2. $x, y \in V\left(F P^{0}\right)$ and $z, w \in V\left(F P^{1}\right)$.
Notice that $\left|V\left(L_{2}^{*}\right)\right| \geq 3$ and $\left|V\left(L_{3}^{*}\right)\right| \geq 3$. Without loss of generality, let $\mathbf{4} \in V\left(L_{2}^{*}\right)$ and $\mathbf{5} \in V\left(L_{3}^{*}\right)$. Since $F P^{4}$ is connected, there exists an $\left\{x^{4}, y^{4}, z^{4}, w^{4}\right\}$-tree $T_{3 k-2}^{\prime}$ in $F P^{4}$, similarly, there exists an $\left\{x^{5}, y^{5}, z^{5}, w^{5}\right\}$-tree $T_{3 k-1}^{\prime}$ in $F P^{5}$. By the definition of $F P_{k}$, there exist four paths $P_{z z^{4}}, P_{w w^{4}}, P_{z z^{5}}$ and $P_{w w^{5}}$ such that $P_{z z^{4}} \cong P_{w w^{4}} \cong L_{2}^{*} \backslash\{\mathbf{0}\}$ and $P_{z z^{5}} \cong P_{w w^{5}} \cong L_{3}^{*} \backslash\{\mathbf{0}\}$. Let $T_{3 k-2}=T_{3 k-2}^{\prime} \cup x x^{4} \cup y y^{4} \cup P_{z z^{4}} \cup P_{w w^{4}}$ and $T_{3 k-1}=T_{3 k-1}^{\prime} \cup x x^{5} \cup y y^{5} \cup P_{z z^{5}} \cup P_{w w^{5}}$. Then $T_{3 k-2}$ and $T_{3 k-1}$ are internally disjoint S-trees in $F P_{k}$. Main goal is to find out $3 k-3$ internally disjoint S-trees in $L_{1}^{*} \square F P_{k-1}$. Let S^{\prime} be a set of x, y, z^{0} and w^{0}. Without loss of generality, assume that $d\left(x, z^{0}\right)=\min d(u, v)$ for $u, v \in S^{\prime}$.
Case 2.1. $\left|S^{\prime}\right| \leq 3$.
In this case, $d\left(x, z^{0}\right)=0$, that is, $z^{0}=x$. Since $F P_{k-1}$ is $(3 k-3)$-connected, by Theorem 2.1, there exist $3 k-3$ internally disjoint (x, y)-paths $P_{1}, P_{2}, \ldots, P_{3 k-3}$ in $F P^{0}$ and $3 k-3$ internally disjoint (z, w) paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{3 k-3}^{\prime}$ in $F P^{1}$. Let $x_{i} \in N_{P_{i}}(x)$ and $z_{i} \in N_{P_{i}^{\prime}}(z)$. Then there exists $z_{i} \in V\left(P_{i}^{\prime}\right)$ such that z_{i} is a corresponding vertex of x_{j} in $F P^{1}$ for $i, j \in[3 k-3]$, suppose that $i=j$. Hence, $x_{i} z_{i} \in E\left(F P_{k}\right)$. Let $T_{i}=P_{i} \cup x_{i} z_{i} \cup P_{i}^{\prime}$ for $i \in[3 k-3]$. Then, $T_{1}, T_{2}, \ldots, T_{3 k-3}$ are $3 k-3$ internally disjoint S-trees in $L_{1}^{*} \square F P_{k-1}$. See Figure 14(a).

Figure 14. (a) Illustrations of Case 2.1; (b) Illustrations of Case 2.2 for $d(x, z)=2$.

Case 2.2. $\left|S^{\prime}\right|=4$.
In this case, $d\left(x, z^{0}\right) \geq 1$. It implies that $d(x, z) \geq 2$. If $d(x, z)=2$. Without loss of generality, assume that $x=000 \cdots 00$. Then $z=1 c_{2} \cdots c_{k}$ such that there exist an $i \in\{2, \ldots, k\}$ satisfying $d_{\mathbf{P}\left(0, c_{i}\right)}=1$ and others $c_{i}=0$, say $z=110 \cdots 00$. If there exist a dimension j such that $\left|S \cap F P^{j: i}\right| \neq 2$ for $j \in[k]$ and $i \in\{0,1, \ldots, 9\}$ when dividing $F P_{k}$ along the j th dimension, then we can find out the desired S-trees by the above discussion. Hence, suppose that $\left|S \cap F P^{j: i}\right|=2$ for arbitrary j when dividing $F P_{k}$ along the j th dimension. Thus, $y=01 b_{3} \cdots b_{k}$ and $w=10 b_{3} \cdots b_{k}$, where $b_{i} \neq 0$ for $i \in\{3, \ldots, k\}$.

Let $F P^{i j}=F P_{k}\left[d_{1} d_{2} d_{3} \cdots d_{k} \in V\left(F P_{k}\right): d_{1}=i, d_{2}=j\right]$. Then $F P^{i j} \cong F P_{k-2}$. Let x_{1} be corresponding vertex of y in $F P^{00}$. Then $x_{1} \neq x$. Choose $3 k-7$ vertices $x_{2}, \ldots, x_{3 k-6}$ from $N_{F P^{00}}(x)$, denote $X=\left\{x_{1}, \ldots, x_{3 k-6}\right\}$. For $i=1, \ldots, 3 k-6$, let z_{i} be corresponding vertices of x_{i} in $F P^{11}$, denote $Z=\left\{z_{1}, \ldots, z_{3 k-6}\right\}$. For $i=2, \ldots, 3 k-6$, let y_{i} and w_{i} be corresponding vertices of x_{i} in $F P^{01}$ and $F P^{10}$, respectively. Denote $Y=\left\{y_{1}, \ldots, y_{3 k-7}\right\}$ and $W=\left\{w_{1}, \ldots, w_{3 k-7}\right\}$, where y_{1} and w_{1} are be corresponding vertices of x in $F P^{01}$ and $F P^{10}$, respectively. Since $F P_{k-2}$ is $(3 k-6)$-connected, there exist $3 k-6$ internally disjoint (a, A)-paths $A_{1}, \ldots, A_{3 k-6}$ in $F P^{i j}$ for $(a, A, i j)=(x, X, 00),(y, Y, 01),(z, Z, 10),(w, W, 11)$, respectively. Let $T_{0}=X_{1} \cup x_{1} y \cup y z_{1} \cup Z_{1} \cup z_{1} w$, $T_{1}=x y_{1} \cup Y_{1} \cup y_{1} z \cup x w_{1} \cup W_{1}$ and $T_{i}=X_{i} \cup x_{i} y_{i} \cup Y_{i} \cup Z_{i} \cup z_{i} w_{i} \cup W_{i} \cup x_{i} w_{i}$ for $i=2, \ldots, 3 k-6$.

Let B^{0} be a subgraph induced by $V\left(F P^{0}-F P^{00}-F P^{01}\right)$ and B^{1} be a subgraph induced by $V\left(F P^{1}-F P^{10}-F P^{11}\right)$. Then there exist two internally disjoint paths $P_{3 k-5}, P_{3 k-4}$ to connect x and y in $F P_{k}\left[V\left(B^{0}\right) \cup\{x, y\}\right]$ and two internally disjoint paths $P_{3 k-5}^{\prime}, P_{3 k-4}^{\prime}$ to connect z and w in $F P_{k}\left[V\left(B^{1}\right) \cup\{z, w\}\right]$. Let $T_{j}=P_{j} \cup x_{j} z_{j} \cup P_{j}^{\prime}$ for $j=3 k-5$ and $3 k-4$, where $x x_{j} \in E\left(P_{j}\right)$ and z_{j} is corresponding vertex of x_{j} in P_{i}^{\prime}. Then, $T_{0}, T_{1}, \ldots, T_{3 k-4}$ are $3 k-3$ internally disjoint S-trees in $L_{1}^{*} \square F P_{k-1}$. See Figure 14(b).

Suppose that $d(x, z) \geq 3$. There are $3 k-4$ internally disjoint S^{\prime}-trees $T_{1}^{\prime}, T_{2}^{\prime}, \ldots, T_{3 k-4}^{\prime}$ in $F P^{0}$ because of the induction hypothesis. Notice that $\left|N_{F P_{k}}\left(z^{0}\right) \cap N_{F P_{k}}\left(w^{0}\right)\right| \leq 2$. Let T_{1}^{\prime} be a tree such that $\left.\mid N_{T_{1}^{\prime}} z^{0}\right) \cap N_{T_{1}^{\prime}}\left(w^{0}\right) \mid=0$. Let $z_{1} \in N_{T_{1}^{\prime}}\left(z^{0}\right)$ and $w_{1} \in N_{T_{1}^{\prime}}\left(w^{0}\right)$. Then $z_{1} \neq w_{1}$. Let $T_{1}=T_{1}^{\prime} \cup\left\{z z^{0}, w w^{0}\right\}$.

Let $S^{\prime \prime}=\left\{x, y, z, w^{0}\right\}$. Since $d_{F P^{0}}\left(z^{0}\right)=3 k-3$, there are $1 \leq d_{T_{i}^{\prime}}\left(z^{0}\right) \leq 2$ for $i \in[3 k-4]$. Construct $3 k-5$ internally disjoint $S^{\prime \prime}$-trees as follows: $T_{i}^{\prime \prime}=\left(T_{i}^{\prime} \backslash z^{0}\right) \cup z_{i} z_{i}^{1} \cup z_{i}^{1} z$ if $\left.N_{T_{i}^{\prime}} z^{0}\right)=\left\{z_{i}\right\}$ and $T_{i}^{\prime \prime}=\left(T_{i}^{\prime} \backslash z^{0}\right) \cup z_{i} z_{i}^{1} \cup z_{i}^{1} z \cup z_{i} z_{j}^{1} \cup z_{j}^{1} z$ if $N_{T_{i}^{\prime}}\left(z^{0}\right)=\left\{z_{i}, z_{j}\right\}$, where $i=2, \ldots, 3 k-4$. Similarly, construct $3 k-5$ internally disjoint S-trees as follows: $T_{i}=\left(T_{i}^{\prime} \backslash w^{0}\right) \cup w_{i} w_{i}^{1} \cup w_{i}^{1} w$ if $N_{T_{i}^{\prime \prime}}\left(w^{0}\right)=\left\{w_{i}\right\}$ and $T_{i}=\left(T_{i}^{\prime \prime} \backslash w^{0}\right) \cup w_{i} w_{i}^{1} \cup w_{i}^{1} w \cup w_{j} w_{j}^{1} \cup w_{j}^{1} w$ if $N_{T_{i}^{\prime \prime}}\left(w^{0}\right)=\left\{w_{i}, w_{j}\right\}$, where $i=2, \ldots, 3 k-4$.

Let $\mathcal{T}=\bigcup_{i=1}^{3 k-4} T_{i}, W=N_{\mathcal{T}}(z) \cup N_{\mathcal{T}}(w)$ and $T_{1}^{\prime \prime}$ be a corresponding tree of T_{1}^{\prime} in $F P^{1}$. Then, $T_{1}^{\prime \prime}$ is a tree in $F P^{1}-W$. Let $T_{3 k-3}=T_{1}^{\prime \prime} \cup x x^{1} \cup y y^{1}$. Then, $T_{1}, T_{2}, \ldots, T_{3 k-3}$ are $3 k-3$ internally disjoint S-trees in $L_{1}^{*} \square F P_{k-1}$.

Therefore, $T_{1}, T_{2}, \ldots, T_{3 k-1}$ are $3 k-1$ internally disjoint S-trees in $F P_{k}$.
Giving an algorithm to find out $3 k-1$ internally disjoint S-trees in $F P_{k}$ for any $S \subseteq V\left(F P_{k}\right)$ with $|S|=4$, it means that $\kappa_{4}\left(F P_{k}\right) \geq 3 k-1$.

```
Algorithm 1 Find out \(3 k-1\) internally disjoint \(S\)-trees in \(F P_{k}\).
Input: An \(k\)-dimensional folded Petersen network \(F P_{k}\) and four vertices \(x, y, z, w\) of \(F P_{k}\).
Output: \(3 k-1\) internally disjoint \(\{x, y, z, w\}\)-trees \(\mathfrak{I}\).
    Initialization: \(i=0, S=\{x, y, z, w\}, \mathfrak{I}=\emptyset, G_{i}=F P_{k}\)
    While \(i<3 k-1\) and \(G_{i}\) is connected do
        construct an \(S\)-tree \(T_{i}\) in \(G_{i}\) such that \(1 \leq d_{T_{i}}(v) \leq 2\) and \(\left|\left\{v: d_{T_{i}}(v)=1\right\}\right| \geq 2\), where \(v \in S\).
    Moreover, \(\left\{u: d_{T_{i}}(u)=1\right\} \subseteq S\)
        \(\mathfrak{I}=\mathfrak{I} \cup T_{i}\)
        \(i=i+1\)
        \(G_{i}=G_{i-1}-\left(V\left(T_{i-1}\right) \backslash S\right)\)
    end while
    return \(\mathfrak{I}\)
```

Now we give the proof of the main result.
Proof of Theorem 1.2. Since $F P_{k}$ is a $3 k$-regular graph, there are $\kappa_{4}\left(F P_{k}\right) \leq 3 k-1$ as Lemma 2.1. Next we will show that $\kappa_{4}\left(F P_{k}\right) \geq 3 k-1$. Let $S=\{x, y, z, w\}$ be a set of arbitrary four distinct vertices in $F P_{k}$. It suffices to show that there exist $3 k-1$ internally disjoint S-trees. The proof of this result by induction on k. By Lemma 2.3, the statement holds for $k=1$. Suppose that the statement holds in $F P_{k-1}$ for $k \geq 2$. Now consider $F P_{k}$. Decompose $F P_{k}$ into 10 disjoint sub-folded Petersen graphs $F P^{0}, \ldots, F P^{9}$, each of which is isomorphic to $F P_{k-1}$, by removing all crossed edges. We only need to take into account the following cases because of symmetry.
Case 1. x, y, z and w belong to four distinct sub-folded Petersen graphs.
By Lemma 3.1, the desired $3 k-1$ internally disjoint S-trees can be obtained in $F P_{k}$.
Case 2. x, y, z and w belong to three distinct sub-folded Petersen graphs.
By Lemma 3.2, the desired $3 k-1$ internally disjoint S-trees can be obtained in $F P_{k}$.
Case 3. x, y, z and w belong to two distinct sub-folded Petersen graphs.
By Lemma 3.4, the desired $3 k-1$ internally disjoint S-trees can be obtained in $F P_{k}$.
Case 4. x, y, z and w belong to the same sub-folded Petersen graph.
By Lemma 3.3, the desired $3 k-1$ internally disjoint S-trees can be obtained in $F P_{k}$.
Hence, $\kappa_{4}\left(F P_{k}\right) \geq 3 k-1$ and the proof is completed.
Proof of Theorem 1.1. Remember that $F P Q_{n, k}$ can be regarded as replacing every vertex of Q_{n} by $F P_{k}$. Take the Figure 15 as an example. Since $F P Q_{n, k}$ is $(n+3 k)$-regular, we have $\kappa_{4}\left(F P Q_{n, k}\right) \leq n+3 k-1$ by Lemma 2.1. In order to prove $\kappa_{4}\left(F P Q_{n, k}\right) \geq n+3 k-1$, it needs to show that there are $n+3 k-1$ internally disjoint S-trees in $F P Q_{n, k}$ for arbitrary $S \subseteq V\left(F P Q_{n, k}\right)$ with $|S|=4$.

Figure 15. Scheme of $F P Q_{1, k}, F P Q_{2, k}$ and $F P Q_{3, k}$.

If $n=1$. According to Lemma 3.3 and 3.4, it is not hard to see that there exist $3 k-3$ internally disjoint S-trees in $K_{2} \square F P_{k-1}$. That is, $\kappa_{4}\left(F P Q_{1, k-1}\right) \geq 3 k-3$. Hence, $\kappa_{4}\left(F P Q_{1, k}\right) \geq 3 k$.

Suppose that $n \geq 2$. When the vertices of S distribute among one copy of $F P_{k}$. Similar to Lemma 3.3, the desired $n+3 k-1$ internally disjoint S-trees can be found in $F P Q_{n, k}$.

When the vertices of S distribute among two copies of $F P_{k}$. Since $\kappa\left(Q_{n}\right)=n$, there are n internally disjoint paths $L_{1}^{*}, L_{2}^{*}, \ldots, L_{n}^{*}$ connecting arbitrary two vertices of Q_{n}. Similar to Lemma 3.4, we can find $3 k S$-trees in $L_{1}^{*} \square F P_{k}$ and $n-1 S$-trees in $\left(\bigcup_{i=2}^{n} L_{i}^{*}\right) \square F P_{k}$ such that these $n+3 k-1 S$-trees are internally disjoint.

When the vertices of S distribute among three copies of $F P_{k}$. Since $\kappa_{3}\left(Q_{n}\right)=n-1$, there are $n-1$ internally disjoint path $T_{1}^{*}, T_{2}^{*}, \ldots, T_{n-1}^{*}$ connecting arbitrary three vertices of Q_{n}. Similar to Lemma 3.2, we can find $3 k+1 S$-trees in $T_{1}^{*} \square F P_{k}$ and $n-2 S$-trees in $\left(\bigcup_{i=2}^{n-1} T_{i}^{*}\right) \square F P_{k}$ such that these $n+3 k-1 S$-trees are internally disjoint.

When the vertices of S distribute among four copies of $F P_{k}$. Since $\kappa_{4}\left(Q_{n}\right)=n-1$, there are $n-1$ internally disjoint path $H_{1}^{*}, H_{2}^{*}, \ldots, H_{n-1}^{*}$ connecting arbitrary four vertices of Q_{n}. Similar to Lemma 3.1, we can find $3 k+1 S$-trees in $H_{1}^{*} \square F P_{k}$ and $n-2 S$-trees in $\left(\bigcup_{i=2}^{n-1} H_{i}^{*}\right) \square F P_{k}$ such that these $n+3 k-1 S$-trees are internally disjoint.

Therefore, $\kappa_{4}\left(F P Q_{n, k}\right)=n+3 k-1$.

4. Conclusions

The generalized ℓ-connectivity is a natural generalization of the traditional connectivity and can serve for measuring the fault tolerance capability of a network. This paper centers on the generalized 4-connectivity of the folded Petersen cube network $F P Q_{n, k}$ and shows that $\kappa_{4}\left(F P Q_{n, k}\right)=n+3 k-1$. As a corollary, $\kappa_{3}\left(F P Q_{n, k}\right)=n+3 k-1$ is obtained easily. Furthermore, the results $\kappa_{4}\left(Q_{n}\right)=\kappa_{4}\left(F P Q_{n, 0}\right)=$ $n-1$ and $\kappa_{4}\left(F P_{k}\right)=\kappa_{4}\left(F P Q_{0, k}\right)=3 k-1$ can be verified. Sabidussi [29] discussed the classical connectivity of Cartesian product graphs, in the next work, we would like to research the generalized 4-connectivity of Cartesian product graphs.

Besides, fault tolerance or connectivity is mainly to provide a data to measure the reliability of a network, but in practical, when a system failure, it is worth considering how to compensate the impact of the fault and to recover the performance of the system before the failure as far as possible such that the system runs stably and reliably. Motivated by Alhasnawi et al. [1-4], it needs to design fault tolerance control to ensure steady-state operation, enhance network' fault resilience, improve network'
robust and efficient operation. In future work, we would like to apply graph theory to solve practical problems.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11971054, 11731002, 11661068) and the Science Found of Qinghai Province (No. 2021-ZJ-703). The authors would like to express their thanks to the referees for their helpful comments and suggestions which improve the presentation of this paper.

Conflict of interest

The authors declare that they have no competing interests.

References

1. B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, Distributed secondary consensus fault tolerant control method for voltage and frequency restoration and power sharing control in multi-agent microgrid, Int. J. Elec. Power, 133 (2021), 107251. https://doi.org/10.1016/j.ijepes.2021.107251
2. B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, J. M. Guerrero, Consensus algorithm-based coalition game theory for demand management scheme in smart microgrid, Sustain Cities Soc., 74 (2021), 103248. https://doi.org/10.1016/j.scs.2021.103248
3. B. N. Alhasnawi, B. H. Jasim, Z. A. S. A. Rahman, J. M. Guerrero, M. D. Esteban, A novel internet of energy based optimal multi-agent control scheme for microgrid including renewable energy resources, Int. J. Environ. Res. Public Health, 18 (2021), 8146. https://doi.org/10.3390/ijerph18158146
4. B. N. Alhasnawi, B. H. Jasim, B. E. Sedhom, E. Hossain, J. M. Guerrero, A new decentralized control strategy of microgrids in the internet of energy paradigm, Energies, 14 (2021), 2183. https://doi.org/10.3390/en14082183
5. J. A. Bondy, U. S. R. Murty, Graph theory, New York: Springer, 2008.
6. G. Chartrand, S. F. Kapoor, L. Lesniak, D. R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq., 2 (1984), 1-6.
7. G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks, 55 (2010), 360-367. https://doi.org/10.1002/net. 20339
8. G. Chartrand, R. J. Wilson, The Petersen graph, Graph. Appl., 69 (1985), 100.
9. S. K. Das, S. Öhring, A. K. Banejee, Embeddings into hyper Petersen networks: Yet another hypercube-like interconnection topology, VLSl Design, 2 (1995), 335-351. https://doi.org/10.1155/1995/95759
10. K. Efe, P. K. Blackwell, W. Slough, T. Shiau, Topological properties of the crossed cube architecture, Parallel Comput., 20 (1994), 1763-1775. https://doi.org/10.1016/0167-8191(94)90130-9
11. M. Hager, Pendant tree-connectivity, J. Comb. Theory B, 38 (1985), 179-189. https://doi.org/10.1016/0095-8956(85)90083-8
12. C. F. Li, S. W. Li, S. J. Li, The 4 -set tree connectivity of (n, k)-star networks, Theor. Comput. Sci., 884 (2020), 81-86. https://doi.org/10.1016/j.tcs.2020.08.004
13. H. Li, X. Li, Y. Sun, The generalized 3-connectivity of Cartesian product graphs, Discrete Math. Theor., 14 (2012), 1. https://doi.org/10.46298/dmtcs. 572
14. H. Li, Y. Ma, W. Yang, Y. Wang, The generalized 3-connectivity of graph products, Appl. Math. Comput., 295 (2017), 77-83. https://doi.org/10.1016/j.amc.2016.10.002
15. S. Li, Some topics on generalized connectivity of graphs, Nankai University, 2012.
16. S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, 2010, arXiv: 1012.5710v1.
17. S. Li, W. Li, Y. Shi, H. Sun, On minimally 2 -connected graphs with generalized connectivity $\kappa_{3}=2$, J. Comb. Optim., 34 (2017), 141-164. https://doi.org/10.1007/s10878-016-0075-z
18. S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition 3-partite graphs, Bull. Malays. Math. Sci. Soc., 37 (2014), 103-121.
19. S. Li, X. Li, Note on the hardness of generalized connectivity, J. Comb. Optim., 24 (2012), 389396. https://doi.org/10.1007/s 10878-011-9399-x
20. S. Li, X. Li, Y. Shi, The minimal size of a graph with generalized connectivity $\kappa_{3} \geq 2$, Australas. J. Comb., 51 (2011), 209-220.
21. S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math., 310 (2010), 2147-2165. https://doi.org/10.1016/j.disc.2010.04.011
22. S. Li, Y. Shi, J. Tu, The generalized 3-connectivity of Cayley graphs on symmetric groups generated by trees and cycles, Graph. Combinator., 33 (2017), 1195-1209. https://doi.org/10.1007/s00373-017-1837-9
23. S. Li, J. Tu, C. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput., 274 (2016), 41-46. https://doi.org/10.1016/j.amc.2015.11.016
24. S. Lin, Q. Zhang, The generalized 4-connectivity of hypercubes, Discrete Appl. Math., 220 (2017), 60-67. https://doi.org/10.1016/j.dam.2016.12.003
25. X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Comb., 58 (2014), 304-319.
26. X. Li, Y. Mao, The generalized 3-connectivity of lexicographic product graphs, Discrete Math. Theor., 16 (2014), 339-354. https://doi.org/10.46298/dmtcs. 1266
27. X. Li, Y. Mao, Generalized connectivity of graphs, Switzerland: Springer, 2016. https://doi.org/10.1007/978-3-319-33828-6
28. S. R. Öhring, S. K. Das, Folded Petersen cube networks: new competitors for the hypercubes, IEEE T. Parall. Distr., 7 (1996), 151-168. https://doi.org/10.1109/71.485505
29. G. Sabidussi, Graphs with given group and given graph theoretical properties, Can. J. Math., 9 (1957), 515-525. https://doi.org/10.4153/CJM-1957-060-7
30. P. C. Saxena, S. Gupta, J. Rai, A delay optimal coterie on the k-dimensional folded Petersen graph, J. Parallel Distr. Com., 63 (2003), 1026-1035. https://doi.org/10.1016/S0743-7315(03)00116-3
31. Y. Sun, S. Zhou, Tree connectivities of Caylay graphs on Abelian groups with small degrees, Bull. Malays. Math. Sci. Soc., 39 (2016), 1673-1685. https://doi.org/10.1007/s40840-015-0147-8
32. H. Whitney, Congruent graphs and connectivity of graphs, Amer. Math. Soc., 54 (1932), 150-168. https://doi.org/10.2307/2371086
33. S. Zhao, R. Hao, The generalized 4-connectivity of exchanged hypercubes, Appl. Math. Comput., 347 (2019), 342-353. https://doi.org/10.1016/j.amc.2018.11.023
34. S. Zhao, R. Hao, The generalized connectivity of alternating group graphs and (n, k)-star graphs, Discrete Appl. Math., 251 (2018), 310-321. https://doi.org/10.1016/j.dam.2018.05.059
35. S. Zhao, R. Hao, E. Cheng, Two kinds of generalized connectivity of dual cubes, Discrete Appl. Math., 257 (2019), 306-316. https://doi.org/10.1016/j.dam.2018.09.025
36. S. Zhao, R. Hao, J. Wu, The generalized 4-connectivity of hierarchical cubic networks, Discrete Appl. Math., 289 (2021), 194-206. https://doi.org/10.1016/j.dam.2020.09.026
37. S. Zhao, R. Hao, J. Wu, The generalized 3-connectivity of some regular networks, J. Parallel Distr. Com., $\mathbf{1 3 3}$ (2019), 18-29. https://doi.org/10.1016/j.jpdc.2019.06.006
38. S. Zhao, R. Hao, L. Wu, The generalized connectivity of (n, k)-bubble-sort graphs, Comput. J., 62 (2019), 1277-1283. https://doi.org/10.1093/comjnl/bxy106
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
