Research article Special Issues

Qualitative theory and approximate solution to a dynamical system under modified type Caputo-Fabrizio derivative

  • Received: 12 March 2022 Revised: 10 May 2022 Accepted: 12 May 2022 Published: 06 June 2022
  • MSC : 26A33, 35A02, 35A25

  • Qualitative theory, together with approximate solutions to a dynamic system, are investigated. The proposed mathematical model is composed of protected, susceptible, infected and treated classes. The adopted model expresses the mechanism of disease due to Typhoid fever. A modified type Caputo-Fabrizio fractional derivative (CFFD) is considered for the intended results. With the help of fixed point theory, some sufficient conditions for the existence of approximate solutions are developed. Also, to compute an approximate solution with respect to each compartment, we utilize the Laplace Transform and the Adomian decomposition method (ADM). A graphical presentation corresponding to some fundamental data is given.

    Citation: Eiman, Saowaluck Chasreechai, Thanin Sitthiwirattham, M. A. El-Shorbagy, Muhammad Sohail, Ubaid Ullah, Mati ur Rahman. Qualitative theory and approximate solution to a dynamical system under modified type Caputo-Fabrizio derivative[J]. AIMS Mathematics, 2022, 7(8): 14376-14393. doi: 10.3934/math.2022792

    Related Papers:

  • Qualitative theory, together with approximate solutions to a dynamic system, are investigated. The proposed mathematical model is composed of protected, susceptible, infected and treated classes. The adopted model expresses the mechanism of disease due to Typhoid fever. A modified type Caputo-Fabrizio fractional derivative (CFFD) is considered for the intended results. With the help of fixed point theory, some sufficient conditions for the existence of approximate solutions are developed. Also, to compute an approximate solution with respect to each compartment, we utilize the Laplace Transform and the Adomian decomposition method (ADM). A graphical presentation corresponding to some fundamental data is given.



    加载中


    [1] World Health Organization, Typhoid fever fact sheet, 2000, Available from: https://www.who.int/news-room/fact-sheets/detail/typhoid.
    [2] World Health Organization, Background paper on vaccination against typhoid fever using New Generation Vaccines presented at the SAGE November 2007 meeting, 2007. Available from: https://silo.tips/download/background-paper-on-vaccination-against-typhoid-fever-using-new-generation-vacci
    [3] C. Jenkins, S. H. Gillespie, Salmonella infection in: GC Cook and AL Zumla Mansons tropical diseases, Elsevier, 2009.
    [4] R. Milligan, M. Paul, M. Richardson, A. Neuberger, Vaccines for preventing typhoid fever, Cochrane Db. Syst. Rev., 2018, CD001261. https://doi.org/10.1002/14651858.CD001261.pub4
    [5] World Health Organization, Background document: The diagnosis, treatment and prevention of typhoid fever, 2003, 1–26.
    [6] M. M. Gibani, E. Jones, A. Barton, C. Jin, J. Meek, S. Camara, et al., Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model, Nat. Med., 25 (2019), 1082–1088. https://doi.org/10.1038/s41591-019-0505-4 doi: 10.1038/s41591-019-0505-4
    [7] O. J. Peter, M. O. Ibrahim, O. B. Akinduko, M. Rabiu, Mathematical model for the control of typhoid fever, IOSR-JM, 13 (2017), 60–66. https://doi.org/10.9790/5728-1304026066 doi: 10.9790/5728-1304026066
    [8] J. A. Harrison, B. Villarreal-Ramos, P. Mastroeni, R. D. de Hormaeche, C. E. Hormaeche, Correlates of protection induced by live Aro- Salmonella typhimurium vaccines in the murine typhoid model, Immunology, 90 (1997), 618–625. https://doi.org/10.1046/j.1365-2567.1997.00158.x doi: 10.1046/j.1365-2567.1997.00158.x
    [9] J. Gonzalez-Guzman, An epidemiological model for direct and indirect transmission of typhoid fever, Math. Biosci., 96 (1989), 33–46. https://doi.org/10.1016/0025-5564(89)90081-3 doi: 10.1016/0025-5564(89)90081-3
    [10] S. Kariuki, Typhoid fever in sub-saharan Africa: Challenges of diagnosis and management of infections, JIDC, 2 (2008), 443–447. https://doi.org/10.3855/jidc.159 doi: 10.3855/jidc.159
    [11] O. D. Makinde, K. O. Okosun, Impact of chemo–therapy on optimal control of malaria disease with infected immigrants, Biosystems, 104 (2011), 32–41. https://doi.org/10.1016/j.biosystems.2010.12.010 doi: 10.1016/j.biosystems.2010.12.010
    [12] S. Cobey, Modeling infectious disease dynamics, Science, 368 (2020), 713–714.
    [13] K. O. Okosun, O. D. Makinde, Optimal control analysis of malaria in the presence of non–linear incidence rate, Appl. Comput. Math., 12 (2013), 20–32.
    [14] K. O. Okosun, O. D. Makinde, Optimal control analysis of hepatitis C virus with acute and chronic stages in the presence of treatment and infected immigrants, Int. J. Biomath., 7 (2014), 1450019. https://doi.org/10.1142/S1793524514500193 doi: 10.1142/S1793524514500193
    [15] C. I. Siettos, L. Russo, Mathematical modeling of infectious disease dynamics, Virulence, 4 (2013), 295–306. https://doi.org/10.4161/viru.24041 doi: 10.4161/viru.24041
    [16] S. Kariuki, G. Revathi, J. Kiiru, D. M. Mengo, J. Mwituria, J. Muyodi, et al., Typhoid in Kenya is associated with a dominant multidrug resistant Salmonellaenterica serovar typhi Haplotype that is also widespread Southeast Asia, J. Clin. Microbiol., 48 (2010), 2171–2176. https://doi.org/10.1128/JCM.01983-09 doi: 10.1128/JCM.01983-09
    [17] I. A. Adetunde, Mathematical models for the dynamics of typhoid fever in Kassena–Nankana district of upper East region of Ghana, J. Mod. Math. Stat., 2 (2008), 45–49.
    [18] M. N. Chamuchi, J. K. Sigey, J. A. Okello, J. M. Okwoyo, SIICR model and simulation of the effects of carriers on the transmission dynamics of typhoid fever in kisii town kenya, CSEA, 2 (2014), 109–116.
    [19] K. R. Adeboye, M. Haruna, A mathematical model for the transmission and control of malaria and typhoid co–infection using sirs approach, Nigeria Res. J. Math., 2 (2015), 1–24.
    [20] A. Omame, R.A. Umana, N.O. Iheonu, S. Chioma, On the existence of a stochastic model of typhoid fever, Math. Theory Model., 5 (2015), 104–113.
    [21] M. A. Khan, M. Parvez, S. Islam, I. Khan, S. Shafie, T. Gul, Mathematical analysis of typhoid model with saturated incidence rate, Adv. Stud. Biol., 7 (2015), 65–78. http://doi.org/10.12988/asb.2015.41059 doi: 10.12988/asb.2015.41059
    [22] B. Cvjetanovic, B. Grab, K. Eumura, Epidemiological model of typhoid fever and its use in planning and evaluation of antityphoid immunization and sanitation programmes, B. World Health Organ, 45 (1971), 53–75.
    [23] V. E. Pitzer, C. C. Bowles, S. Baker, G. Kang, V. Balaji, J. Farrar, et al., Predicting the impact of vaccination on the transmission dynamics of typhoid in South Asia: A mathematical modeling study, PLoS Negl. Trop Dis., 8 (2014), e2642. https://doi.org/10.1371/journal.pntd.0002642 doi: 10.1371/journal.pntd.0002642
    [24] J. H. Cook, Are cholera and typhoid vaccines a good investment for slums in Kolkata, India. Pediatr. Infect. Dis. J., 9 (2010), 485–496.
    [25] N. C. Moffat, K. Johanna, A. Jeconiah, J. M. Okwoyo, SIIR model and simulation of the effects of carrier on the transmission dynamics of tyhoid fever in Kisii town, Kenya, 2 (2014), 109–116.
    [26] J. K. Nthiiri, O. G. Lawi, C. O. Akinyi, D. O. Oganga, C. M. Wachira, M. J. Musyoka, et al., Mathematical modelling of Typhoid fever disease incorporating protection against infection, J. Adv. Math. Comput. Sci., 14 (2016), 1–10. https://doi.org/10.9734/BJMCS/2016/23325 doi: 10.9734/BJMCS/2016/23325
    [27] I. Podlubny, Fractional differential equations: Mathematics in science and engineering, New York: Academic Press, 1999.
    [28] A. A. Kilbas, H. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Amsterdam: Elseveir, 2006.
    [29] X. J. Yang, H. M. Srivastava, C. Cattani, Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Rom. Rep. Phys., 67 (2015), 752–761
    [30] R. Shah, H. Khan, M. Arif, P. Kumam, Application of Laplace-Adomian decomposition method for the analytical solution of third-order dispersive fractional partial differential equations, Entropy, 21 (2019), 335. https://doi.org/10.3390/e21040335 doi: 10.3390/e21040335
    [31] J. S. Duan, R. Rach, D. Baleanu, A. M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations, Commun. Fract. Calc., 3 (2012), 73–99.
    [32] O. Kiymaz, An algorithm for solving initial value problems using Laplace Adomian decomposition method. Appl. Math. Sci., 3 (2009), 1453–1459.
    [33] J. Biazar, Solution of the epidemic model by Adomian decomposition method, Appl. Math. Comput., 173 (2006), 1101–1106. https://doi.org/10.1016/j.amc.2005.04.036 doi: 10.1016/j.amc.2005.04.036
    [34] F. Haq, K. Shah, G. ur Rahman, M. Shahzad, Numerical solution of fractional order smoking model via Laplace Adomian decomposition method. Alex. Eng. J. 57 (2018), 1061–1069. https://doi.org/10.1016/j.aej.2017.02.015
    [35] Z. Odibat, D. Baleanu, Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives, Appl. Numer. Math., 156 (2020), 94–105. https://doi.org/10.1016/j.apnum.2020.04.015 doi: 10.1016/j.apnum.2020.04.015
    [36] P. Veeresha, H. M. Baskonus, D. G. Prakasha, W. Gao, G. Yel, Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena, Chaos Soliton. Fract., 133 (2020), 109661. https://doi.org/10.1016/j.chaos.2020.109661 doi: 10.1016/j.chaos.2020.109661
    [37] S. Etemad, A. Hussain, A. Imran, J. Alzabut, S. Rezapour, A. G. Selvam, On a fractional cantilever beam model in the q-difference inclusion settings via special multi-valued operators, J. Inequal. Appl., 2021 (2021), 174. https://doi.org/10.1186/s13660-021-02708-6 doi: 10.1186/s13660-021-02708-6
    [38] D. Baleanu, M. Q. Iqbal, A. Hussain, S. Etemad, S. Rezapour, On solutions of fractional multi-term sequential problems via some special categories of functions and (AEP)-property, Adv. Differ. Equ., 2021 (2021), 197. https://doi.org/10.1186/s13662-021-03356-2 doi: 10.1186/s13662-021-03356-2
    [39] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [40] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [41] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton. Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
    [42] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0
    [43] M. Al-Refai, D. Baleanu, Comparison principles of fractional differential equations with non-local derivative and their applications, AIMS Mathematics, 6 (2021), 1443–1451. https://doi.org/10.3934/math.2021088 doi: 10.3934/math.2021088
    [44] J. Singh, D. Kumar, J. J. Nieto, Analysis of an El Nino-Southern Oscillation model with a new fractional derivative, Chaos Soliton. Fract., 99 (2017), 109–115. https://doi.org/10.1016/j.chaos.2017.03.058 doi: 10.1016/j.chaos.2017.03.058
    [45] V. E. Tarasov, Caputo-Fabrizio operator in terms of integer derivatives: Memory or distributed lag? Comput. Appl. Math., 38 (2019), 113. https://doi.org/10.1007/s40314-019-0883-8
    [46] H. Mohammadi, M. K. A. Kaabar, J. Alzabut, A. G. M. Selvam, S. Rezapour, A complete model of Crimean-Congo Hemorrhagic Fever (CCHF) transmission cycle with nonlocal fractional derivative, J. Funct. Spaces, 2021 (2021), 1273405, https://doi.org/10.1155/2021/1273405 doi: 10.1155/2021/1273405
    [47] D. Baleanu, H. Mohammadi, S. Rezapour, A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the Rubella disease model, Adv. Differ. Equ., 2020 (2020), 184. https://doi.org/10.1186/s13662-020-02614-z doi: 10.1186/s13662-020-02614-z
    [48] S. Rezapour, H. Mohammadi, A. Jajarmi, A new mathematical model for Zika virus transmission, Adva. Differ. Equ., 2020 (2020), 589. https://doi.org/10.1186/s13662-020-03044-7 doi: 10.1186/s13662-020-03044-7
    [49] A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos Soliton. Fract., 114 (2018), 347–363. https://doi.org/10.1016/j.chaos.2018.07.022 doi: 10.1016/j.chaos.2018.07.022
    [50] A. Atangana, Fractional discretization: The African's tortoise walk, Chaos Soliton. Fract., 130 (2020), 109399. https://doi.org/10.1016/j.chaos.2019.109399 doi: 10.1016/j.chaos.2019.109399
    [51] S. Rezapour, S. Etemad, H. Mohammadi, A mathematical analysis of a system of Caputo-Fabrizio fractional differential equations for the anthrax disease model in animals, Adv. Differ. Equ., 2020 (2020), 481. https://doi.org/10.1186/s13662-020-02937-x doi: 10.1186/s13662-020-02937-x
    [52] K. Shah, M. A. Alqudah, F. Jarad, T. Abdeljawad, Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo-Febrizio fractional order derivative, Chaos Soliton. Fract., 135 (2020), 109754. https://doi.org/10.1016/j.chaos.2020.109754 doi: 10.1016/j.chaos.2020.109754
    [53] D. Baleanu, S. M. Aydogn, H. Mohammadi, S. Rezapour, On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method, Alex. Eng. J., 59 (2020), 3029–3039. https://doi.org/10.1016/j.aej.2020.05.007 doi: 10.1016/j.aej.2020.05.007
    [54] K. Shah, F. Jarad, T. Abdeljawad, On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative, Alex. Eng. J., 59 (2020), 2305–2313. https://doi.org/10.1016/j.aej.2020.02.022 doi: 10.1016/j.aej.2020.02.022
    [55] G. Nazir, K. Shah, A. Debbouche, R. A. Khan, Study of HIV mathematical model under nonsingular kernel type derivative of fractional order, Chaos Soliton. Fract., 139 (2020), 110095. https://doi.org/10.1016/j.chaos.2020.110095 doi: 10.1016/j.chaos.2020.110095
    [56] A. S. Shaikh, K. S. Nisar, Transmission dynamics of fractional order Typhoid fever model using Caputo–Fabrizio operator, Chaos Soliton. Fract., 128 (2019), 355–365. https://doi.org/10.1016/j.chaos.2019.08.012 doi: 10.1016/j.chaos.2019.08.012
    [57] A. B. Amar, A. Jeribi, M. Mnif, Some fixed point theorems and application to biological model, Numer. Funct. Anal. Optim., 29 (2008), 1–23. https://doi.org/10.1080/01630560701749482 doi: 10.1080/01630560701749482
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1588) PDF downloads(86) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog