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Abstract: Qualitative theory, together with approximate solutions to a dynamic system, are
investigated. The proposed mathematical model is composed of protected, susceptible, infected and
treated classes. The adopted model expresses the mechanism of disease due to Typhoid fever. A
modified type Caputo-Fabrizio fractional derivative (CFFD) is considered for the intended results. With
the help of fixed point theory, some sufficient conditions for the existence of approximate solutions are
developed. Also, to compute an approximate solution with respect to each compartment, we utilize
the Laplace Transform and the Adomian decomposition method (ADM). A graphical presentation
corresponding to some fundamental data is given.
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1. Introduction

Infectious diseases are those caused by viruses, bacteria, epiphytes and parasites, such as
protozoans or worms [1]. They can easily spread in the human population and cause many infections
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in humans. Among the most common that spread easily in the human population is Typhoid. Typhoid
is also called Typhoid fever. It is caused by the bacterium Salmonella enterica serovar Typhi, which
usually affects humans. This disease is named due to its symptoms, resemblance to typhus. The
common signs and symptoms of this disease include restlessness, headache, constipation or diarrhea,
sustained fever, poor appetite and vomiting. It spreads through contaminated food, water or drink.
Also, contaminated water or food containing this bacteria causes illness when entering the human
body. After entering the blood through the lymph nodes, then the bacteria start to damage the
gallbladder, spleen, liver, etc. Abdominal pain, fever and general ill feeling are the common
symptoms of Typhoid fever [2]. The incubation period is about 10–14 days, but it can be as short as 3
days or as long as 21 days. This bacterium infiltrates the intestinal wall, and before entering the
bloodstream, it multiplies in mononuclear phagocyte cells [3]. This is the reason for its presence in
great numbers in the bloodstream. Treatment is based on patient serological testing, blood culture and
stool culture. Oral amoxicillin and chloramphenicol may be used for the sensitive strain, whereas the
persistent strain may be suppressed by oral therapy using ciprofloxacin. Worldwide, this disease
affects millions of people each year. It has been reported that in Africa approximately 0.4 million
cases occur every year. Further, the incidence is 50 cases per 100,000 every year [4]. Public
awareness and behavior changes are integral to controlling typhoid fever disease, coupled with
vaccination of high-risk populations [5]. Oral and injectable vaccines are two types of typhoid fever,
vaccine, which may not be 100 percent effective. A serious and prolonged illness may be caused if
someone contracts a drug-resistant strain of typhoid fever, which cannot be treated with effective
antibiotics. We refer to some detailed studies about the said disease as [6–9].

In developing countries, typhoid fever is an ordinary disease. It is a major cause of illness and
death, particularly among children, because of a lack of sanitation. From 2009–2015, the said disease
has been transmitted increasingly in Ethiopia. A detailed report on the transmission of this disease can
be read in [10]. In Figure 1, the disease cases per year have been presented graphically.
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Figure 1. In previous seven years, reported cases in Ethiopia.

Recently, epidemiology has been advanced due to significant progress in medical science and
technology. Researchers are increasingly working on investigating different diseases from various
aspects, including the transmission mechanism of a disease, reasons and causes. They collect data and
then develop various analyses to help the health department in controlling the disease in the
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community. In this regard, mathematical models play a significant role in describing the dynamics of
infectious disease by predicting suitable control strategies and evaluating and ranking them by
cost-effectiveness [11–15]. Much effective research based on the transmission dynamics of typhoid
has been carried out in the last few decades (see [16]). For instance, some mathematical models for
the dynamics of typhoid fever in Kassena–Nankana District of the Upper East Region of Ghana were
developed to investigate the transmission of the disease in [17]. In the same line, mathematical
models have been formulated to explain the mechanisms of transmission-related infectious diseases of
typhoid in the last few years [18–21]. Generally, systems having ordinary differential equations are
used to design these models. Also, these models are designed under realistic parameters and
assumptions. In the mathematical model developed in [22], the population has been divided into age
brackets to get more information on the effects of strategies and activities to control the disease in
different age brackets. The data showed that, once the occurrence of the infection dropped down from
the threshold level, then it is unlikely to be maintained among the age brackets in the community, as
the chronic infections diminish naturally. In the mathematical model developed in [23], the effects of
vaccination, both indirect and direct, have been studied. The randomized vaccine trail method was
used to validate the model. The data on school-based vaccination strategies suggests that typhoid
vaccination alone is not enough for the elimination of the disease. However, it is helpful in the
prevention of cases in the short term and causes a decrease in typhoid cases. The transmission of the
diseases can happen from both long-term and short-term carriers. However, it is not evident from the
data that either type of carrier contributes at the same rate as symptomatic carriers. In [24],
mathematical model has been designed for protection through a vaccination program and its benefits.
In the mentioned study, the population was divided into controlled (vaccinated) and uncontrolled
(unvaccinated) groups. The data analysis showed that vaccination decreases infection and
transmission among the entire population. A mathematical model was developed to study the impact
of control strategies to effectively control the disease in Kisii town [25]. This model studied the
effects of carriers on the dynamics of typhoid and health education on typhoid in Kenya. The model
considers that endogenous reactivation and exogenous re-infection are the main reasons behind
typhoid fever in exposed individuals. Treatment was given to all infected individual, including
exposed individuals. A structure for the kind of individual contacts that may cause the infection’s
transmission was integrated into the population. The obtained numerical results showed that the Kisii
local government in Kenya can achieve a typhoid-free status by 2030 if it can reduce typhoid carriers
by 9.5 percent. Using classical differential equations, a model was formulated in [26] as

Ṗ(t) = a ∧ −(γ + µ)P = ϕ1(t,P,S,I,T ),

Ṡ(t) = (1 − a) ∧ +γP − (λ + µ)S = ϕ2(t,P,S,I,T ),

İ(t) = λS − (δ + β + µ)I = ϕ3(t,P,S,I,T ),
Ṫ (t) = βI − µT = ϕ4(t,P,S,I,T ),
P(0) = P0, S(0) = S0, I(0) = I0, T (0) = T0,

(1.1)

where P0,S0,I0,T0 ≥ 0. Further, the authors in [26] have divided the entire population into different
compartments.

• Those individuals who are protected (vaccinated) are included in the protected class P.
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• Those individuals who have a high chance of getting an infection of typhoid fever are included in
the susceptible class S.
• Those individuals showing the symptoms of typhoid fever are included in the infected class I.
• The treated individuals are included in the treated class T .

Susceptible individuals are recruited into the population at the rate of (1 − a)∧. Susceptible
individuals acquire typhoid infection at a rate of λ. Also, a∧ and (1 − a)∧ are the recruitment rates
into the class of individuals protected against typhoid and the class of individuals susceptible to
typhoid, respectively, µ is the natural mortality rate, δ is the mortality rate due to disease, and β is the
rate at which the disease is treated. In this model, it is assumed that the individual is not re-infected
once treated. Here, N denotes the size of the entire population at any time t and is taken as
N = P + S + I + T .

Mathematical models have been well investigated by using ordinary differential equations.
Nevertheless, due to the rapid development in the field of fractional calculus, various researchers have
extended the area of mathematical modeling with the concepts of fractional calculus in the last few
years. Fractional calculus has recently been an attractive branch of research due to its wide range of
applications in modeling real-world phenomena more comprehensively. For some fundamental
concepts and valuable work, refer to [27, 28]. Researchers have investigated fractional differential
equations from various aspects, such as existence theory, stability and numerical analysis. They have
established various techniques, methods and theories for calculating exact or numerical solutions to
fractional order problems as it is quite difficult to solve every fractional order differential equation for
its exact or analytical solution. Because fractional order derivatives have been defined in various
ways, there is no unique definition. Also, fractional order operators are complex. Therefore, in many
cases for complex problems, it is very difficult or even impossible to find an exact solution. For
instance, the authors of [29] used the local fractional homotopy perturbation method for solving
fractional partial differential equations arising in mathematical physics. In the same line, the authors
of [30] used the Laplace Adomian decomposition method (LADM) for the semi-analytical solution of
fractional partial differential equations. ADM has been discussed in detail for fractional differential
equations in [31]. Also, LADM and ADM have been used for various problems of fractional calculus
in [32–34]. Using numerical methods, some problems of fractional order differential equations have
been studied in [35] and [36]. The authors of [37] studied a fractional cantilever beam model in the
q-difference inclusion settings via special multi-valued operators for numerical and theoretical results.
Similarly, the authors of [38] studied some fractional multi-term sequential problems via some special
categories of functions.

Epidemiological models have been investigated very well under the Caputo fractional order
derivative. Also, various researchers have shown proved that fractional-order models describe
real-world phenomena in a more accurate, systematic and precise way than the classic integer-order
counterparts with ordinary time-derivatives. Although these studies have provided significant results
as compared to classic integer order models, a satisfactory precision may not be obtained in the whole
time duration. This is due to the appearance of a singularity in the definition of usual fractional order
derivatives. This appearance of singular kernels sometimes causes difficulties in the numerical
analysis of the mentioned area. Therefore, the said reason makes those operators impractical for the
description of nonlocal dynamics in various problems (for details see [39]). Therefore, to overcome
said difficulties, in 2015 and 2016 two new nonsingular fractional derivatives were proposed. The first
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one is the Caputo-Fabrizio fractional derivative (CFFD) [40], and the second one is the
Atangana-Baeanu-Caputo fractional derivative [41]. Some authors developed various results,
including inequalities satisfying different properties and comparison principles, in [42, 43]. The
advantages of the mentioned operators have been discussed in detail by various authors. The CFFD
has been extensively used in mathematical models of various infectious diseases, as well as in other
real-world problems (see [44–47]). Recent good results where various advantages of the CFFD are
discussed in [48–51]. For dealing with various problems with the CFFD for analytical or numerical
results, various tools have been used in the literature. One of the important tools increasingly used for
traditional problems under the Caputo power-law derivative is LADM. The mentioned method has
been used to deal with various problems with the CFFD (see [52–56]).

2. Formulation of proposed model

Motivated by the above work, the proposed model has not been investigated for existence,
uniqueness and semi-analytical results with the CFFD. Therefore, to fill this gap, in this paper we
handle the model (1.1) under CFFD for existence theory and semi-analytical results as

CF Dω
t P(t) = a ∧ −(γ + µ)P = ϕ1(t,P,S,I,T ),

CF Dω
t S(t) = (1 − a) ∧ +γP − (λ + µ)S = ϕ2(t,P,S,I,T ),

CF Dω
t I(t) = λS − (δ + β + µ)I = ϕ3(t,P,S,I,T ),

CF Dω
t T (t) = βI − µT = ϕ4(t,P,S,I,T ),

P(0) = P0, S(0) = S0, I(0) = I0, T (0) = T0,

(2.1)

where P0, S0, I0, T0 ≥ 0, and ω ∈ (0, 1]. Here, λ is a force infection and has been defined in [26]
as λ = πθI

N , where π is defined as the probability of getting typhoid fever, and θ is the contact rate of
infection. For our simplicity, we write it as λ = λ̄I, where λ̄ = πθ

N , and N is a constant population such
that N = P + S + I + T .

The right side of the system (2.1) vanishes at t = 0, to receive the initialization conditions [42]. The
operator CF Dω

t
stands for the modified type Caputo-Fabrizio derivative, adjusted by Abdeljawad [42].

Since the original CFFD operator [40] has been modified by Abdeljawad, converges to the classical
differential operator if ω → 1. Conversely, the ordinary CFFD does not have the aforementioned
property. For a description of the above model, a flow chart is given in Figure 2. First of all, some
qualitative results, such as the existence and uniqueness of the solution corresponding to the considered
model, are established. It is necessary that a dynamic system, which we are investigating, should be
tested for the existence of a solution. For this purpose, various methods have been used. Fixed point
theory is one of the most powerful recent tools for the investigation of the aforesaid analysis. Therefore,
to obtain these results, fixed point theorems of Krassnoselskii [57] and Banach are used to develop
sufficient conditions for the existence and uniqueness of solutions to the proposed model. Further, we
compute some semi-analytical results for approximate solution to various compartments of the model.
Then, Laplace transforms together with the ADM are used to investigate some approximate analytical
results. In the end, by using Matlab, graphical representations of approximate results are provided.
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Figure 2. A flow chart of the proposed model.

3. Preliminaries

To obtain all these results, we need some basic definitions and results of the modified model, which
are given as follows.

Definition 1. [42] Let v ∈ H1(0, φ), φ > 0, ω ∈ (0, 1); then, the CFFD is recalled as

CFDω
t (v(t)) =

M (ω)
1 − ω

∫ t

0
v′(t) exp

[
− ω
t − ξ

1 − ω

]
dξ.

However, if v does not belong toH1(0, φ), then the derivative is given by

CFDω
t (v(t)) =

M (ω)
1 − ω

∫ t

0
(v(t) − v(ξ)) exp

[
− ω
z − ξ

1 − ω

]
dξ.

Definition 2. [42] For v ∈ H1(0, φ), φ > 0, the CF integral is given as

CFIωt [v(t)] =
(1 − ω)
M (ω)

v(t) +
ω

M (ω)

∫ t

0
v(ξ)dξ, ω ∈ (0, 1].

Definition 3. [44] The LT of CFDω
t

v(t) with M (ω) = 1 is given as

L [CFDω
t v(t)] =

sL [v(t)] − v(0)
s + ω(1 − s)

, s ≥ 0, ω ∈ (0, 1].

Note: Corresponding to existence theory, let J = [0, φ] and 0 ≤ t ≤ φ < ∞ and we define space as
A = B([0, φ] × R2,R), with norm given as ‖(x, y)‖ = supt∈J [|x(t)| + |y(t)|].

Theorem 1. [57] Let X be a convex subset of Y, and we have two operators P1, P2 with the following
properties:

1) P1U + P2U ∈ X for every U ∈ X;
2) P1 is a contraction;
3) P2 is continuous and compact.

Then, at least one solution for the operator equation P1U + P2U = U exists.
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4. Main result for proposed fractional order model

In this portion, the first part of our main results is discussed. Some results about the existence and
uniqueness of the solution for the proposed model (2.1) are derived here.

Applying integral operator CFIω
t

on both sides of (2.1) and including initial conditions, one gets
P(t) = P(0) +

(1−ω)
M (ω)ϕ1(t,P,S,I,T ) + ω

M (ω)Γ(ω)

∫ t
0

(t − ξ)ω−1ϕ1(ξ,P(ξ),S(ξ),I(ξ),T (ξ))dξ,

S(t) = S(0) +
(1−ω)
M (ω)ϕ2(t,P,S,I,T ) + ω

M (ω)Γ(ω)

∫ t
0

(t − ξ)ω−1ϕ2(ξ,P(ξ),S(ξ),I(ξ),T (ξ))dξ,

I(t) = I(0) +
(1−ω)
M (ω)ϕ3(t,P,S,I,T ) + ω

M (ω)Γ(ω)

∫ t
0

(t − ξ)ω−1ϕ3(ξ,P(ξ),S(ξ),I(ξ),T (ξ))dξ,

T (t) = T (0) +
(1−ω)
M (ω)ϕ4(t,P,S,I,T ) + ω

M (ω)Γ(ω)

∫ t
0

(t − ξ)ω−1ϕ4(ξ,P(ξ),S(ξ),I(ξ),T (ξ))dξ.

(4.1)

This further can be simplified as

Θ(t) = Θ0 +f(t,Θ(t))
(1 − ω)
M (ω)

+
ω

M (ω)

∫ t

0
Ψ(ξ,Θ(ξ))dξ, (4.2)

where

Θ(t) =


P(t)
S(t)
I(t)
T (t)

, Θ0 =


P0

S0

I0

T0

, f(t,Θ(t)) =


ϕ1(t,P,S,I,T )
ϕ2(t,P,S,I,T )
ϕ3(t,P,S,I,T )
ϕ4(t,P,S,I,T ).

(4.3)

The following assumptions are taken into account for further analysis.

(D1) For constants Lf > 0 with Θ, Θ̄ ∈ A, one has

|f(t,Θ(t)) −f(t, Θ̄(t))| ≤ Lf[|Θ − Θ̄|].

(D2) For fixed real values Cf,Cf > 0 and Mf > 0, one has

|f(t,Θ(t))| ≤ Cf|Θ| + Mf.

Using (4.2) and (4.3), the two operators are defined as follows:

P1(Θ) = Θ0(t) +f(t,Θ(t))
(1 − ω)
M (ω)

,

P2(Θ) =
ω

M (ω)

∫ t

0
f(ξ,Θ(ξ))dξ. (4.4)

Theorem 2. Using assumptions (D1) and (D2), the integral system (4.2) has at least one solution with
the restriction Lf

M (ω) < 1.

Proof. Let us consider a closed as well as convex subset of A as X = {Θ ∈ A : ‖Θ‖ ≤ ρ, ρ > 0}. It is
required to prove that P1 : X→ X is a contraction. As given that Θ, Θ̄ ∈ B, and we have

‖P1Θ − P1Θ̄‖ = sup
t∈J

∣∣∣∣∣(f(t,Θ(t)) − (f(t, Θ̄(t))
) (1 − ω)
M (ω)

∣∣∣∣∣
AIMS Mathematics Volume 7, Issue 8, 14376–14393.
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≤
(1 − ω)
M (ω)

Lf sup
t∈J

|Θ(t) − Θ̄(t)|

≤
Lf

M (ω)
‖Θ − Θ̄‖.

Hence, P1 is a contraction. Now, to show P2 is a compact and continuous operator, given that Θ ∈ X,
we have

‖P2(Θ)‖ = sup
t∈J

∣∣∣∣∣ ω

M (ω)

∫ t

0
f(ξ,Θ(ξ))dξ

∣∣∣∣∣
≤

φ

M (ω)
[Cfρ + Mf] := ∆. (4.5)

From (4.5), we conclude that P2 is bounded. Because of the continuity of f, P2 is also continuous. In
the same manner, it can be proved that P2 is equi-continuous by taking t1 < t2 ∈ J . Therefore, in view
of the Theorem 1, the problem 2.1 has at least one solution. �

Theorem 3. By hypothesis (D1), the system (4.2) has a unique solution under the condition (1+φ)L
M (ω) < 1.

Proof. Let us define P : A→ A by

P(Θ) = Θ0 +f(t,Θ(t))
(1 − ω)
M (ω)

+
ω

M (ω)

∫ t

0
f(ξ,Θ(ξ))dξ.

Let Θ, Θ̄ ∈ A, and we have

‖P(Θ) − P(Θ̄)‖ ≤ sup
t∈J

(1 − ω)
M (ω)

∣∣∣∣∣f(t,Θ(t)) −f(t, Θ̄(t))
∣∣∣∣∣

+
ω

M (ω)
sup
t∈J

∫ t

0
|f(ξ,Θ(ξ)) −f(ξ, Θ̄(ξ))|dξ

≤
(1 + φ)L
M (ω)

‖Θ − Θ̄‖. (4.6)

This shows that P is a contraction, so the concerned problem (4.2) has a unique solution. Therefore,
the proposed model (2.1) has a unique solution. �

5. Algorithm for approximate solution of fractional order model (2.1)

To compute the algorithm for the required approximate solution of the proposed model, we use the
Laplace transform on both sides of the system (2.1) and for simplicity take M (ω) = 1 and Ξ(ω, s) =
s+ω(1−s)

s . Then, we have

L [P(t)] =
P(0)

s
+ Ξ(ω, s)L [a ∧ −(γ + µ)P],

L [S(t)] =
S(0)

s
+ Ξ(ω, s)L [(1 − a) ∧ +γP − (λ̄I + µ)S],

L [I(t)] =
I(0)

s
+ Ξ(ω, s)L [λ̄IS − (δ + β + µ)I],

L [T (t)] =
T (0)

s
+ Ξ(ω, s)L [βI − µT ].

(5.1)
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The needed solution can be obtained in as

P(t) =

∞∑
q=0

Pq(t), S(t) =

∞∑
q=0

Sq(t),

I(t) =

∞∑
q=0

Iq(t), T (t) =

∞∑
q=0

Tq(t),

(5.2)

where the nonlinear term can be decomposed as IS =
∑∞

q=0 Aq such that

Aq =
1
q!

dq

dξq

[ q∑
k=0

ξkSq

q∑
k=0

ξkIq

]∣∣∣∣∣
ξ=0
.

A few Adomian polynomials are computed as

A0 = S0I0, A1 = S0I1 + S1I0, etc.

Hence, using (5.2), the system (5.1) becomes

L
[ ∞∑

q=0

Pq(t)
]

=
P(0)

s
+ Ξ(ω, s)L

[
a ∧ −(γ + µ)

∞∑
q=0

Pq(t)
]
,

L
[ ∞∑

q=0

Sq(t)
]

=
S(0)

s
+ Ξ(ω, s)L

[
(1 − a) ∧ +γ

∞∑
q=0

Pq(t) − λ̄
∞∑

q=0

Aq(t) − µ
∞∑

q=0

Sq(t)
]
,

L
[ ∞∑

q=0

Iq(t)
]

=
I(0)

s
+ Ξ(ω, s)L

[
λ̄

∞∑
q=0

Aq(t) − (δ + β + µ)
∞∑

q=0

Iq(t)
]
,

L
[ ∞∑

q=0

Tq(t)
]

=
T (0)

s
+ Ξ(ω, s)L

[
β

∞∑
q=0

Iq(t) − µ
∞∑

q=0

Tq(t)
]
.

(5.3)

From (5.3), we equate terms as

L [P0(t)] =
P0

s
+ Ξ(ω, s)L (a∧),

L [S0(t)] =
S0

s
+ Ξ(ω, s)L

(
(1 − a) ∧

)
,

L [I0(t)] =
I0

s
, L [T0(t)] =

T0

s
,

(5.4)



L [P1(t)] = Ξ(ω, s)L
(
− (γ + µ)P0

)
,

L [S1(t)] = Ξ(ω, s)L
(
γP0 − λ̄S0I0 − µS0

)
,

L [I1(t)] = Ξ(ω, s)L
(
λ̄S0I0 − (δ + β + µ)I0

)
,

L [T1(t)] = Ξ(ω, s)L
(
βI0 − µT0

)
,

(5.5)
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14385

L [P2(t)] = Ξ(ω, s)L
(
− (γ + µ)P1

)
,

L [S2(t)] = Ξ(ω, s)L
(
γP1 − λ̄[S1I0 + I1S0] − µS1

)
,

L [I2(t)] = Ξ(ω, s)L
(
λ̄[S1I0 + I1S0] − (δ + β + µ)I1

)
,

L [T2(t)] = Ξ(ω, s)L
(
βI1 − µT1

)
,

...

(5.6)



L [Pq+1(t)] = Ξ(ω, s)L
(
− (γ + µ)Pq

)
,

L [Sq+1(t)] = Ξ(ω, s)L
(
γPq − λ̄Aq − µSq

)
,

L [Iq+1(t)] = Ξ(ω, s)L
(
λ̄Aq − (δ + β + µ)Iq

)
,

L [Tq+1(t)] = Ξ(ω, s)L
(
βIq − µTq

)
, q ≥ 0.

(5.7)

After simplifying, we get 
P0(t) = P0 +

(
1 + (t − 1)ω

)
a∧,

S0(t) = S0 +

(
1 + (t − 1)ω

)
(1 − a)∧,

I0(t) = I0, T0(t) = T0,

(5.8)



P1(t) = −(γ + µ)
(
P0(1 + (t − 1)ω) + a ∧ (1 + 2(t − 1)ω) + a ∧ (1 − 2t +

t2

2
)ω2

)
,

S1(t) =

(
γP0 − λ̄S0I0 − µS0

)
(1 + (t − 1)ω) +

(
a ∧ +(1 − a) ∧

)
(1 + 2(t − 1)ω)

+

(
a ∧ +(1 − a) ∧

)
(1 − 2t +

t2

2!
)ω2),

I1(t) = λ̄
(
S0I0(1 + (t − 1)ω) + (1 − a)a ∧ (1 + 2(t − 1)ω) + (1 − a) ∧ (1 − 2t +

t2

2!
)ω2

)
− (δ + β + µ)

(
I0(1 + (t − 1)ω)

)
,

T1(t) = (βI0 − µT0)(1 + (t − 1)ω),

(5.9)
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

P2(t) = (γ + µ)2
(
P0

(
1 + 2(t − 1)ω + (1 − 2t +

t2

2!
)ω2

)
+ a ∧

(
1 + 3(t − 1)ω + 3(1 − 2t +

t2

2!
)ω2 − (1 − 3t + 3

t2

2!
−
t3

3!
)ω3

))
,

S2(t) =

(
− γ(γ + µ)P0 + (λ̄I0S0 + µ)

(
(λ̄I0 + µ)S 0 − γP0

))(
1 + 2(t − 1)ω + (1 − 2t +

t2

2!
)ω2

)
+ (−γ(γ + µ)a ∧ +

(
(λ̄I0S0 + µ)(λ + µ)(1 − a) ∧ −γa ∧

)
(
1 + 3(t − 1)ω + 3(1 − 2t +

t2

2!
)ω2 + (3t − 3

t2

2!
+
t3

3!
)ω3

)
,

(5.10)

I2(t) = λ
(
γ(P0 + a∧) − (λ + µ)(S0 + (1 − a)∧) − (δ + β + µ)

(
λ̄I0S0(S0 + (1 − a)∧) − (δ + β + µ)I0

))
+ ω

((
λ(2γP0 + 3a ∧ λ̄I0S0 + 2S0(λ + µ) − 3(λ̄I0S0 + µ)(1 − a) ∧

)
− (δ + β + µ)

(
2λS0 + 3λ(1 − a) ∧ −(δ + β + µ)2I0

)
(t − 1)

)
+ ω2

(
λ̄I0S0

(
γP0 − S0(λ̄I0 + µ) − (δ + β + µ)λS0 + 3λ(1 − a) ∧ −(δ + β + µ)I0

)
(1 − 2t +

t2

2!
) + γa ∧ (3 − 4t + 3

t2

2!
)

− (λ̄I0S0 + µ)(1 − a) ∧ (3 + 6t − 4
t2

2!
)
)

+ ω3
(
λ̄I0

(
γa ∧ (−1 + t − 3

t2

2!
+
t3

3!
) + (λ + µ)(1 − a) ∧ (1 + 3t + 4

t2

2!
−
t3

3!
)
)

− (δ + β + µ)
(
− λ̄I0(1 − a) ∧ (1 − 3t + 3

t2

2!
−
t3

3!
)
))
,

(5.11)

T2(t) = βλ̄I0S0 + (1 − a)∧) − βI0((δ + β + µ) + µ) − µ2T0

+ ω
((

2βλ̄I0S0 + 3βλ̄I0S0(1 − a) ∧ +2β(δ + β + µ)I0 − 2µβI0 − 2µ2T0

)
(t − 1)

)
+ ω2

((
βλS0 + βλ̄I0S0(1 − a) ∧ −β(δ + β + µ)I0 − µβI0 − µ

2T0

)
(1 − 2t +

t2

2!
)
)

+ ω3
(
βλ̄I0S0(1 − a) ∧ (−1 + t +

t2

2!
+
t3

3!
)
)
,

, (5.12)

and so on. Similarly, the other terms are calculated. The required solutions will be written as
P(t) = P0 + P1(t) + P2(t) + P3(t) + . . . .

S(t) = S0 + S1(t) + S2(t) + S3(t) + . . . .

I(t) = I0 + I1(t) + I2(t) + I3(t) + . . . .

T (t) = T0 + T1(t) + T2(t) + T3(t) + . . . .

(5.13)
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6. Results and discussion

Here, we use the values given in Table 1. Using Matlab, we plot the solutions of (5.13) up to few
terms. The numerical values for parameters used are given in Table 1. For various fractional orders,
the solutions are displayed in Figures 3–6.

From Figure 3, we see that the protected populations are decreasing at different rates due to variation
in fractional order. Consequently, the susceptible class population is also declining with variation
in dynamics due to different fractional orders, as shown in Figure 4. In the same line, the infected
population dynamics are also different at different fractional orders, as presented in Figure 5. In the
Figure 6, the dynamics of the treated class are shown using various fractional orders. Fractional orders
derivatives explain the dynamics in more detail.

Table 1. Interpretations and numerical values of model parameters.

Parameters Description of parameters Numerical value Source
∧ Rate of recruitment 0.0044 [26]
a Adjustment parameter 0.8 [26]
µ Rate of natural mortality 0.016 [26]
δ Rate of disease induced mortality 0.005 [26]
γ Loss of protection rate 0.001 [26]
β Treatment rate 0.9 [26]
π Probability rate of getting typhoid fever disease 0.0011 [26]
φ Typhoid transmission probability rate 0.0011 [26]
θ Infection contact rate 0.0002 [26]
P0 Protected class initial value 500 assumed
S0 Susceptible class initial value 90 [26]
I0 Infected class initial value 20 [26]
T0 Treated class initial value 0 assumed
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Figure 3. Representation of a few terms of approximate solutions for protected class at
various fractional orders.
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Figure 4. Representation of a few terms of approximate solutions for susceptible class at
various fractional orders.
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Figure 5. Representation of a few terms of approximate solutions for infected class at various
fractional orders.
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Figure 6. Representation of a few terms of approximate solutions for treated class at various
fractional orders.

7. Conclusions

In this work, we have investigated a four-compartmental mathematical model of typhoid fever of
fractional order. The four compartments are protected, susceptible, infected and treated individuals.
The CFFD has been used to investigate the qualitative and analytical aspects of the considered model.
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The existence of a solution of the model has been checked by using fixed point theorems due to Banach
and Krassnoselskii. We have used the Laplace transform coupled with the ADM for computation of
the semi-analytical solution of the proposed model. The proposed method has some advantages, for
example, it does not need any prior discretization of initial data. Also, it does not depend on auxiliary
parameters, like the homotopy method, to control it. Also, the method provides a series of types
of solutions. In most cases, the series solution converges to the exact value (solution) of the problem.
Further, the proposed method is easy to implement for the computation of solutions to various problems
of fractional order differential equations. In the future, we will extend these results for piecewise
equations of the fractional-order derivative model of typhoid fever.
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