Research article

Decision-making strategy based on Heronian mean operators for managing complex interval-valued intuitionistic uncertain linguistic settings and their applications

  • Received: 04 February 2022 Revised: 18 March 2022 Accepted: 27 March 2022 Published: 23 May 2022
  • MSC : 03E52, 03E72, 28E10, 68T27, 94D05

  • This analysis diagnoses a well-known and dominant theory of complex interval-valued intuitionistic uncertain linguistic (CI-VIUL) settings, which is considered to be a very powerful and capable tool to handle ambiguous sorts of theories. Furthermore, to enhance the features of the newly developed CI-VIUL information, we diagnose the algebraic laws, score value and accuracy value. Moreover, keeping in mind that the Heronian mean (HM) operator is a massive dominant operator that can suggest information on interrelationships, in this manuscript, we develop the CI-VIUL arithmetic HM (CI-VIULAHM) operator, CI-VIUL weighted arithmetic HM (CI-VIULWAHM) operator, CI-VIUL geometric HM (CI-VIULGHM) operator, CI-VIUL weighted geometric HM (CI-VIULWGHM) operator and their well-known achievements in the form of some results, important properties and a discussion of some specific cases. At the end, we check the practicality and usefulness of the initiated approaches, and a multi-attribute decision-making (MADM) technique is implemented for CI-VIUL settings. The reliability of the proposed MADM tool is demonstrated by a computational example that evaluates the impact of the diagnosed approaches on various well-known prevailing theories.

    Citation: Zeeshan Ali, Tahir Mahmood, Muhammad Aslam. Decision-making strategy based on Heronian mean operators for managing complex interval-valued intuitionistic uncertain linguistic settings and their applications[J]. AIMS Mathematics, 2022, 7(8): 13595-13632. doi: 10.3934/math.2022751

    Related Papers:

  • This analysis diagnoses a well-known and dominant theory of complex interval-valued intuitionistic uncertain linguistic (CI-VIUL) settings, which is considered to be a very powerful and capable tool to handle ambiguous sorts of theories. Furthermore, to enhance the features of the newly developed CI-VIUL information, we diagnose the algebraic laws, score value and accuracy value. Moreover, keeping in mind that the Heronian mean (HM) operator is a massive dominant operator that can suggest information on interrelationships, in this manuscript, we develop the CI-VIUL arithmetic HM (CI-VIULAHM) operator, CI-VIUL weighted arithmetic HM (CI-VIULWAHM) operator, CI-VIUL geometric HM (CI-VIULGHM) operator, CI-VIUL weighted geometric HM (CI-VIULWGHM) operator and their well-known achievements in the form of some results, important properties and a discussion of some specific cases. At the end, we check the practicality and usefulness of the initiated approaches, and a multi-attribute decision-making (MADM) technique is implemented for CI-VIUL settings. The reliability of the proposed MADM tool is demonstrated by a computational example that evaluates the impact of the diagnosed approaches on various well-known prevailing theories.



    加载中


    [1] L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] J. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174. https://doi.org/10.1016/0022-247X(67)90189-8 doi: 10.1016/0022-247X(67)90189-8
    [3] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [4] Z. Pawlak, Rough sets and fuzzy sets, Fuzzy Set. Syst., 17 (1985), 99–102. https://doi.org/10.1016/S0165-0114(85)80029-4 doi: 10.1016/S0165-0114(85)80029-4
    [5] W. Zhang, (Yin) (Yang) bipolar fuzzy sets, Proceedings of IEEE International Conference on Fuzzy Systems Proceedings, 1998,835–840. https://doi.org/10.1109/FUZZY.1998.687599 doi: 10.1109/FUZZY.1998.687599
    [6] T. Mahmood, A novel approach towards bipolar soft sets and their applications, J. Math., 2020 (2020), 4690808. https://doi.org/10.1155/2020/4690808 doi: 10.1155/2020/4690808
    [7] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [8] K. Atanassov, Interval-valued intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, Heidelberg: Physica, 1999,139–177. https://doi.org/10.1007/978-3-7908-1870-3_2
    [9] J. Liu, J. Mai, H. Li, B. Huang, Y. Liu, On three perspectives for deriving three-way decisions with linguistic intuitionistic fuzzy information, Inform. Sciences, 588 (2022), 350–380. https://doi.org/10.1016/j.ins.2021.12.072 doi: 10.1016/j.ins.2021.12.072
    [10] P. Gupta, M. Mehlawat, F. Ahemad, Selection of renewable energy sources: A novel VIKOR approach in an intuitionistic fuzzy linguistic environment, Environ. Dev. Sustain., in press. https://doi.org/10.1007/s10668-022-02172-2
    [11] C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision-making problem, International Journal of Fuzzy System Applications, 7 (2018), 3. https://doi.org/10.4018/IJFSA.2018070103 doi: 10.4018/IJFSA.2018070103
    [12] S. Faizi, M. Shah, T. Rashid, A modified VIKOR method for group decision-making based on aggregation operators for hesitant intuitionistic fuzzy linguistic term sets, Soft Comput., 26 (2022), 2375–2390. https://doi.org/10.1007/s00500-021-06547-x doi: 10.1007/s00500-021-06547-x
    [13] S. Fu, X. Qu, H. Zhou, G. Fan, A multi-attribute decision-making model using interval-valued intuitionistic fuzzy numbers and attribute correlation, Int. J. Enterp. Inf. Syst., 14 (2018), 21–34. https://doi.org/10.4018/IJEIS.2018010102 doi: 10.4018/IJEIS.2018010102
    [14] S. Meng, Y. He, Generalized scaled prioritized intuitionistic fuzzy geometric interaction aggregation operators and their applications to the selection of cold chain logistics enterprises, International Journal of Fuzzy System Applications, 7 (2018), 1–21. https://doi.org/10.4018/IJFSA.2018010101 doi: 10.4018/IJFSA.2018010101
    [15] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [16] Z. Chen, S. Aghakhani, J. Man, S. Dick, ANCFIS: A neurofuzzy architecture employing complex fuzzy sets, IEEE T. Fuzzy Syst., 19 (2011), 305–322. https://doi.org/10.1109/TFUZZ.2010.2096469 doi: 10.1109/TFUZZ.2010.2096469
    [17] D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE T. Fuzzy Syst., 11 (2003), 450–461. https://doi.org/10.1109/TFUZZ.2003.814832 doi: 10.1109/TFUZZ.2003.814832
    [18] G. Zhang, T. Dillon, K. Cai, J. Ma, J. Lu, Operation properties and δ-equalities of complex fuzzy sets, Int. J. Approx. reason., 50 (2009), 1227–1249. https://doi.org/10.1016/j.ijar.2009.05.010 doi: 10.1016/j.ijar.2009.05.010
    [19] H. Nguyen, A. Kandel, V. Kreinovich, Complex fuzzy sets: towards new foundations, Proceedings of Ninth IEEE International Conference on Fuzzy Systems, 2000, 1045–1048. https://doi.org/10.1109/FUZZY.2000.839195 doi: 10.1109/FUZZY.2000.839195
    [20] S. Dick, Toward complex fuzzy logic, IEEE T. Fuzzy Syst., 13 (2005), 405–414. https://doi.org/10.1109/TFUZZ.2004.839669 doi: 10.1109/TFUZZ.2004.839669
    [21] D. Tamir, N. Rishe, A. Kandel, Complex fuzzy sets and complex fuzzy logic an overview of theory and applications, In: Fifty years of fuzzy logic and its applications, Cham: Springer, 2015,661–681. https://doi.org/10.1007/978-3-319-19683-1_31
    [22] D. Tamir, M. Last, A. Kandel, The theory and applications of generalized complex fuzzy propositional logic, In: Soft computing: state of the art theory and novel applications, Berlin: Springer, 2013,177–192. https://doi.org/10.1007/978-3-642-34922-5_13
    [23] M. Akram, A. Bashir, Complex fuzzy ordered weighted quadratic averaging operators, Granul. Comput., 6 (2021), 523–538. https://doi.org/10.1007/s41066-020-00213-7 doi: 10.1007/s41066-020-00213-7
    [24] L. Bi, S. Dai, B. Hu, S. Li, Complex fuzzy arithmetic aggregation operators, J. Intell. Fuzzy Syst., 36 (2019), 2765–2771. https://doi.org/10.3233/JIFS-18568 doi: 10.3233/JIFS-18568
    [25] J. Merigo, A. Gil-Lafuente, D. Yu, C. Llopis-Albert, Fuzzy decision making in complex frameworks with generalized aggregation operators, Appl. Soft Comput., 68 (2018), 314–321. https://doi.org/10.1016/j.asoc.2018.04.002 doi: 10.1016/j.asoc.2018.04.002
    [26] A. Alkouri, A. Salleh, Complex intuitionistic fuzzy sets, AIP Conference Proceedings, 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515
    [27] H. Garg, D. Rani, Complex interval-valued intuitionistic fuzzy sets and their aggregation operators, Fund. Inform., 164 (2019), 61–101. https://doi.org/10.3233/FI-2019-1755 doi: 10.3233/FI-2019-1755
    [28] T. Kumar, R. Bajaj, On complex intuitionistic fuzzy soft sets with distance measures and entropies, J. Math., 2014 (2014), 972198. https://doi.org/10.1155/2014/972198 doi: 10.1155/2014/972198
    [29] H. Garg, D. Rani, Some results on information measures for complex intuitionistic fuzzy sets, Int. J. Intell. Syst., 34 (2019), 2319–2363. https://doi.org/10.1002/int.22127 doi: 10.1002/int.22127
    [30] R. Ngan, L. Son, M. Ali, D. Tamir, N. Rishe, A. Kandel, Representing complex intuitionistic fuzzy set by quaternion numbers and applications to decision making, Appl. Soft Comput., 87 (2020), 105961. https://doi.org/10.1016/j.asoc.2019.105961 doi: 10.1016/j.asoc.2019.105961
    [31] D. Zindani, S. Maity, S. Bhowmik, Complex interval-valued intuitionistic fuzzy TODIM approach and its application to group decision making, J. Ambient Intell. Human. Comput., 12 (2021), 2079–2102. https://doi.org/10.1007/s12652-020-02308-0 doi: 10.1007/s12652-020-02308-0
    [32] M. Ali, D. Tamir, N. Rishe, A. Kandel, Complex intuitionistic fuzzy classes, Proceedings of IEEE International Conference on Fuzzy Systems, 2016, 2027–2034. https://doi.org/10.1109/FUZZ-IEEE.2016.7737941 doi: 10.1109/FUZZ-IEEE.2016.7737941
    [33] H. Garg, D. Rani, Novel aggregation operators and ranking method for complex intuitionistic fuzzy sets and their applications to decision-making process, Artif. Intell. Rev., 53 (2020), 3595–3620. https://doi.org/10.1007/s10462-019-09772-x doi: 10.1007/s10462-019-09772-x
    [34] Y. Al-Qudah, N. Hassan, Complex multi-fuzzy soft expert set and its application, Int. J. Math. Comput. Sci., 14 (2019), 149–176.
    [35] Z. Ali, T. Mahmood, M. Aslam, R. Chinram, Another view of complex intuitionistic fuzzy soft sets based on prioritized aggregation operators and their applications to multiattribute decision making, Mathematics, 9 (2021), 1922. https://doi.org/10.3390/math9161922 doi: 10.3390/math9161922
    [36] T. Mahmood, Z. Ali, K. Ullah, Q. Khan, H. Al-Salman, A. Gumaei, Complex Pythagorean fuzzy aggregation operators based on confidence levels and their applications, Math. Biosci. Eng., 19 (2022), 1078–1107. https://doi.org/10.3934/mbe.2022050 doi: 10.3934/mbe.2022050
    [37] X. Xie, H. Liu, S. Zeng, L. Lin, W. Li, A novel progressively under sampling method based on the density peaks sequence for imbalanced data, Knowl.-Based Syst., 213 (2021), 106689. https://doi.org/10.1016/j.knosys.2020.106689 doi: 10.1016/j.knosys.2020.106689
    [38] L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sciences, 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [39] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE T. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [40] P. Liu, F. Jin, Methods for aggregating intuitionistic uncertain linguistic variables and their application to group decision making, Inform. Sciences, 205 (2012), 58–71. https://doi.org/10.1016/j.ins.2012.04.014 doi: 10.1016/j.ins.2012.04.014
    [41] P. Liu, Z. Liu, X. Zhang, Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making, Appl. Math. Comput., 230 (2014), 570–586. https://doi.org/10.1016/j.amc.2013.12.133 doi: 10.1016/j.amc.2013.12.133
    [42] Z. Liu, P. Liu, Intuitionistic uncertain linguistic partitioned Bonferroni means and their application to multiple attribute decision-making, Int. J. Syst. Sci., 48 (2017), 1092–1105. https://doi.org/10.1080/00207721.2016.1239140 doi: 10.1080/00207721.2016.1239140
    [43] P. Liu, Y. Chen, Y. Chu, Intuitionistic uncertain linguistic weighted Bonferroni OWA operator and its application to multiple attribute decision making, Cybernet. Syst., 45 (2014), 418–438. https://doi.org/10.1080/01969722.2014.929348 doi: 10.1080/01969722.2014.929348
    [44] Z. Liu, H. Xu, X. Zhao, P. Liu, J. Li, Multi-attribute group decision making based on intuitionistic uncertain linguistic Hamy mean operators with linguistic scale functions and its application to health-care waste treatment technology selection, IEEE Access, 7 (2018), 20–46. https://doi.org/10.1109/ACCESS.2018.2882508 doi: 10.1109/ACCESS.2018.2882508
    [45] P. Liu, X. Zhang, Some intuitionistic uncertain linguistic Bonferroni mean operators and their application to group decision making, Soft Comput., 23 (2019), 3869–3886. https://doi.org/10.1007/s00500-018-3048-6 doi: 10.1007/s00500-018-3048-6
    [46] Y. Xu, H. Wang, Approaches based on 2-tuple linguistic power aggregation operators for multiple attribute group decision making under linguistic environment, Appl. Soft Comput., 11 (2011), 3988–3997. https://doi.org/10.1016/j.asoc.2011.02.027 doi: 10.1016/j.asoc.2011.02.027
    [47] Y. Xu, J. Merigó, H. Wang, Linguistic power aggregation operators and their application to multiple attribute group decision making, Appl. Math. Model., 36 (2012), 5427–5444. https://doi.org/10.1016/j.apm.2011.12.002 doi: 10.1016/j.apm.2011.12.002
    [48] Y. Xu, H. Wang, Power geometric operators for group decision making under multiplicative linguistic preference relations, Int. J. Uncertain. Fuzz., 20 (2012), 139–159. https://doi.org/10.1142/S0218488512500079 doi: 10.1142/S0218488512500079
    [49] Z. Ali, T. Mahmood, M. Yang, TOPSIS method based on complex spherical fuzzy sets with Bonferroni mean operators, Mathematics, 8 (2020), 1739. https://doi.org/10.3390/math8101739 doi: 10.3390/math8101739
    [50] T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019), 7041–7053. https://doi.org/10.1007/s00521-018-3521-2 doi: 10.1007/s00521-018-3521-2
    [51] S. Zeng, N. Zhang, C. Zhang, W. Su, L. Carlos, Social network multiple-criteria decision-making approach for evaluating unmanned ground delivery vehicles under the Pythagorean fuzzy environment, Technol. Forecast. Soc., 175 (2022), 121414. https://doi.org/10.1016/j.techfore.2021.121414 doi: 10.1016/j.techfore.2021.121414
    [52] X. Liu, Y. Xu, Z. Gong, F. Herrera, Democratic consensus reaching process for multi-person multi-criteria large scale decision making considering participants' individual attributes and concerns, Inform. Fusion, 77 (2022), 220–232. https://doi.org/10.1016/j.inffus.2021.07.023 doi: 10.1016/j.inffus.2021.07.023
    [53] Y. Lu, Y. Xu, J. Huang, J. Wei, E. Herrera-Viedma, Social network clustering and consensus-based distrust behaviors management for large-scale group decision-making with incomplete hesitant fuzzy preference relations, Appl. Soft Comput., 117 (2022), 108373. https://doi.org/10.1016/j.asoc.2021.108373 doi: 10.1016/j.asoc.2021.108373
    [54] S. Zhu, J. Huang, Y. Xu, A consensus model for group decision making with self‐confident linguistic preference relations, Int. J. Intell. Syst., 36 (2021), 6360–6386. https://doi.org/10.1002/int.22553 doi: 10.1002/int.22553
    [55] S. Zeng, J. Zhou, C. Zhang, J. Merigó, Intuitionistic fuzzy social network hybrid MCDM model for an assessment of digital reforms of manufacturing industry in China, Technol. Forecast. Soc., 176 (2022), 121435. https://doi.org/10.1016/j.techfore.2021.121435 doi: 10.1016/j.techfore.2021.121435
    [56] M. Riaz, M. Hashmi, H. Kalsoom, D. Pamucar, Y. Chu, Linear Diophantine fuzzy soft-rough sets for the selection of sustainable material handling equipment, Symmetry, 12 (2020), 1215. https://doi.org/10.3390/sym12081215 doi: 10.3390/sym12081215
    [57] M. Akram, A. Adeel, J. Alcantud, Fuzzy N-soft sets: A novel model with applications, J. Intell. Fuzzy Syst., 35 (2018), 4757–4771. https://doi.org/10.3233/JIFS-18244 doi: 10.3233/JIFS-18244
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1542) PDF downloads(137) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog