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Abstract: This analysis diagnoses a well-known and dominant theory of complex interval-valued 

intuitionistic uncertain linguistic (CI-VIUL) settings, which is considered to be a very powerful and 

capable tool to handle ambiguous sorts of theories. Furthermore, to enhance the features of the newly 

developed CI-VIUL information, we diagnose the algebraic laws, score value and accuracy value. 

Moreover, keeping in mind that the Heronian mean (HM) operator is a massive dominant operator that 

can suggest information on interrelationships, in this manuscript, we develop the CI-VIUL arithmetic 

HM (CI-VIULAHM) operator, CI-VIUL weighted arithmetic HM (CI-VIULWAHM) operator, CI-

VIUL geometric HM (CI-VIULGHM) operator, CI-VIUL weighted geometric HM (CI-VIULWGHM) 

operator and their well-known achievements in the form of some results, important properties and a 

discussion of some specific cases. At the end, we check the practicality and usefulness of the initiated 

approaches, and a multi-attribute decision-making (MADM) technique is implemented for CI-VIUL 

settings. The reliability of the proposed MADM tool is demonstrated by a computational example that 

evaluates the impact of the diagnosed approaches on various well-known prevailing theories. 
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1. Introduction 

Decision-making approaches are the techniques we use to get a decision in many situations, like 

deciding to cross a canal, choosing a later semester’s classes or establishing an extended-term business 

scheme. Furthermore, human decision-making is frequently learned as a consequence of the sensitive 

performance of alternative terms on possible options and the values of consequences connected with 

these decisions. Continuously, a large number of intellectuals have used this notion to take a lot of 

benefits from it. In 1965, Zadeh [1] employed a decision-making tool, named a fuzzy set (FS), by 

modifying the range of a crisp set to form the unit interval [0, 1]. The value of a truth grade (TG) (part 

of a FS) is not greater than one. Therefore, it indicates the data in the real world in a more massive and 

varied way than the application of crisp sets. Nowadays, there are various research tools and techniques 

for FS theory in distinct regions of research and practical life. For example, L-FSs were diagnosed 

in [2], hesitant FSs were employed in [3], rough sets were exposed in [4], bipolar FSs were investigated 

in [5] and bipolar soft sets were initiated in [6]. The analysis discussed above received much attention 

by researchers, but their approaches are neglected in various places. For illustration, if an agency 

allows data toward matters such that the TG is 0.6 and the falsity grade (FG) is 0.3, then 0.6+0.3=0.9≤1; 

hence, FSs cannot respond to such a dilemma. To address and manage such circumstances, 

Atanassov [7] initiated the notion of intuitionistic FSs (IFSs), with the condition that the sum of both 

grades must be less than or equal to 1. Yet what happened, if someone gives the opinion in an interval-

valued (I-V) form, in such sort of circumstances, the principle of an I-V IFS (I-VIFS) [8] is massively 

valuable as compared to the existing notion of IFSs. Nowadays, there are various research tools and 

techniques for IFS theory in distinct regions of research and in practical life. For instance, linguistic 

intuitionistic fuzzy information was diagnosed by Liu et al. [9]. Gupta et al. [10] illustrated the theory 

of the VIKOR approach for the intuitionistic fuzzy linguistic environment. Jana and Pal [11] 

discovered the theory of bipolar IFSs and their applications. Faizi et al. [12] diagnosed the theory of 

aggregation operators for hesitant intuitionistic fuzzy linguistic information. Fu et al. [13] utilized the 

theory of decision-making techniques for I-VIFSs, and the theory of geometric interaction aggregation 

operators for IFSs was diagnosed by Meg and He [14]. 

Ramot et al. [15] diagnosed the fundamental theory of complex FSs (CFSs) by giving a new look 

to the TG by designating it in the form of a complex number lying in the unit disc |𝑧| ≤ 1. CFSs proved 

to be massively valuable and well-constructed for managing invaluable and less efficient data used in 

genuine life dilemmas. The range (unit disc in the complex plane) of CFSs is more modified than the 

range of FSs (unit interval). A valuable number of intellectuals have exploited a lot of approaches in 

valuable regions, e.g., neuro-fuzzy sets [16], complex fuzzy logic [17], several properties of CFSs [18] 

and CFS theory [19]. Further, Dick [20] and Tamir et al. [21,22] also investigated CFSs, and more 

related investigations are given in [23–25]. Additionally, upon the occurrence of various issues, the 

complex IFS (CIFS) was exposed by Alkouri and Salleh [26], who proved it to be very valuable for 

managing awkward and invaluable data. CIFSs cope with such sort of problems, which include TGs 

and FGs, in the form of complex-valued numbers with real and unreal parts that belong to the unit 

interval. The exact and meaningful conditions of CIFSs are described in the shapes of 0 ≤ 𝑚𝛤𝑅𝑃(𝑘̆) +

𝑛𝛤𝑅𝑃(𝑘̆) ≤ 1  and 0 ≤ 𝑚𝛤𝐼𝑃(𝑘̆) + 𝑛𝛤𝐼𝑃(𝑘̆) ≤ 1 . Given 𝑚𝛤𝐼𝑃(𝑘̆) = 𝑛𝛤𝐼𝑃(𝑘̆) = 0  in CIFSs, we get IFSs. By 

considering the CIFSs, various people have used the CIFSs and tried to employ them in the fields of 

different regions, e.g., complex interval-valued IFSs (CI-VIFS) [27], complex intuitionistic fuzzy soft 

sets [28], knowledge measures [29], quaternion numbers [30], the TODIM method [31], complex 

intuitionistic fuzzy groups [32], aggregation operators [33], hypersoft sets based on CFS [34], complex 

intuitionistic fuzzy and neutrosophic sets [35] and decision-making strategies [35–37]. 
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In general, a fuzzy system is any system in which the variables range over states that are fuzzy 

numbers (FNs) rather than real numbers. These FNs may express linguistic terms such as “very small” 

and “small”. If they do, the variable is stated as the “linguistic variable” (LV), initiated by Zadeh [38]. 

Every term is described on behalf of a variable with values that are real numbers belonging to a 

particular range. Furthermore, the mathematical form of 2-tuple LVs was diagnosed in [39], and 

uncertain LVs were exposed in [40]. The combination of uncertain LVs and IFSs was stated in [41]. 

Bonferroni mean (BM) operators based on the combination of the work in [41,42] and weighted BM 

operators based on the combination of uncertain LVs and IFSs are described in [43]. The notion of 

Hamy operators based on intuitionistic uncertain variables is described in [44], and the fundamental 

and valuable Bonferroni operators based on complex intuitionistic uncertain variables were developed 

in [45]. Xu and Wang [46] defined the power aggregation operators based on 2-tuple linguistic sets 

that are not able to cope with fuzzy types of information. Furthermore, Xu et al. [47] proposed power 

aggregation operators based on linguistic sets that still contain many issues because they are not able 

to manage the fuzzy type of information. Similarly, Xu and Wang [48] diagnosed the power geometric 

operators for multiplicative linguistic preference relations. Assume an enterprise wants to utilize a 

biometric system in the main offices of some organization. For this, the enterprise decides to call upon 

some experts for giving their opinions concerning each system. Based on this analysis, they try to 

select beneficial biometric systems. It is clear / obvious that the existing theories based on FSs, IFSs, 

I-V FSs, etc., are not able to cope with it, because these theories can cope with one dimension of 

information at a time. Thus, for the above-cited types of dilemmas, we need to improve the quality and 

worth of the prevailing theories; hence, the theory of complex I-V intuitionistic uncertain linguistic 

(CI-VIUL) information is more valuable and efficient for managing two-dimensional information in a 

singleton set. The real part (amplitude term) and imaginary part (phase term) represent the model and 

production data of the biometric system. Keeping the value and supremacy of the above-cited theories, 

we can see that the theory of Heronian mean (HM) operators for CI-VIUL information has not been 

described yet. Thus, the main challenging task for the experts is to 

1) express the information in the shape of CI-VIUL numbers (CI-VIULNs), 

2) express various new aggregation operators for evaluating some preferences of experts, 

3) diagnose a procedure for evaluating the decision-making problem and 

4) find the beneficial optima. 

To achieve Objective 1, in this manuscript, we diagnose a well-known theory of CI-VIUL settings, 

as it is a powerful and capable tool to handle an ambiguous sort of theories. Furthermore, we enhance 

the features of the CI-VIUL information and diagnose the algebraic laws, score value (SV) and 

accuracy value (AV) for CI-VIUL settings. To achieve Objective 2, we develop the CI-VIUL arithmetic 

HM (CI-VIULAHM), CI-VIUL weighted arithmetic HM (CI-VIULWAHM), CI-VIUL geometric HM 

(CI-VIULGHM), CI-VIUL weighted geometric HM (CI-VIULWGHM) and their well-known 

achievements in the form of some results, important properties and specific cases. To achieve Objective 

3, we check the practicality and usefulness of the invented approaches, and a multi-attribute decision-

making (MADM) technique is implemented for CI-VIUL settings. To achieve Objective 4, the 

reliability of the proposed MADM tool is demonstrated by a computational example that assesses the 

impact of the diagnosed approaches on various well-known prevailing theories. 

The major contribution of this analysis is exposed in the following forms: The diagnosis of a well-

known theory of CI-VIUL settings and their algebraic laws, and the revision of various basic existing 

methodologies in Section 2. The well-known theory of CI-VIUL settings and their algebraic laws, SV 
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and AV for CI-VIUL settings are diagnosed in Section 3. In Section 4, we develop the CI-VIULAHM, 

CI-VIULWAHM, CI-VIULGHM, CI-VIULWGHM and their well-known achievements in the form 

of some results, important properties and specific cases. In Section 5, we check the practicality and 

usefulness of the invented approaches and a MADM technique is implemented for CI-VIUL settings. 

In Section 6, the reliability of the proposed MADM tool is demonstrated via a computational example 

that assesses the impact of the diagnosed approaches on various well-known prevailing theories. 

Section 7 concludes the manuscript. 

2. Preliminaries 

To diagnose a well-known theory of CI-VIUL settings and their algebraic laws, SV and AV for 

CI-VIUL settings, we have revised various basic existing methodologies like CI-VIFSs and their 

operational laws. Further, the mathematical terms 𝒳𝑈𝑁𝐼⏞  , 𝑚𝛤𝐶𝐼 and 𝑛𝛤𝐶𝐼, as described by the universal 

set, TG and FG respectively. 

Definition 1. [27] The mathematical expression 

𝛤𝐶𝐼 = {(𝓂𝛤𝐶𝐼(𝔨̆), 𝓃𝛤𝐶𝐼(𝔨̆)) : 𝔨̆ ∈ 𝒳𝑈𝑁𝐼
⏞  },                     (1) 

is called a CI-VIFS, where 

𝓂𝛤𝐶𝐼(𝔨̆) = [𝓂𝛤𝑅𝑃
− (𝔨̆),𝓂𝛤𝑅𝑃

+ (𝔨̆)]𝑒𝑖2𝜋([𝓂𝛤𝐼𝑃
− (𝔨̆),𝓂𝛤𝐼𝑃

+ (𝔨̆)])
 

and 

𝓃𝛤𝐶𝐼(𝔨̆) = [𝓃𝛤𝑅𝑃
− (𝔨̆), 𝓃𝛤𝑅𝑃

+ (𝔨̆)]𝑒𝑖2𝜋([𝓃𝛤𝐼𝑃
− (𝔨̆),𝓃𝛤𝐼𝑃

+ (𝔨̆)])
. 

The major tools of CI-VIFS are 

0 ≤ 𝓂𝛤𝑅𝑃
+ (𝔨̆) + 𝓃𝛤𝑅𝑃

+ (𝔨̆) ≤ 1 

and 

0 ≤ 𝓂𝛤𝐼𝑃
+ (𝔨̆) + 𝓃𝛤𝐼𝑃

+ (𝔨̆) ≤ 1. 

The mathematical expression 

ℒ𝛤𝐶𝐼(𝔨̆) = [ℒ𝛤𝑅𝑃
− (𝔨̆), ℒ𝛤𝑅𝑃

+ (𝔨̆)]𝑒𝑖2𝜋([ℒ𝛤𝐼𝑃
− (𝔨̆),ℒ𝛤𝐼𝑃

+ (𝔨̆)]) = [(1 −𝓂𝛤𝑅𝑃
− (𝔨̆) − 𝓃𝛤𝑅𝑃

− (𝔨̆)) , (1 −𝓂𝛤𝑅𝑃
+ (𝔨̆) −

𝓃𝛤𝑅𝑃
+ (𝔨̆))] 𝑒

𝑖2𝜋[(1−𝓂𝛤𝐼𝑃
− (𝔨̆)−𝓃𝛤𝐼𝑃

− (𝔨̆)),(1−𝓂𝛤𝐼𝑃
+ (𝔨̆)−𝓃𝛤𝐼𝑃

+ (𝔨̆))]
, 

called the refusal grade in the CI-VIF numbers (CI-VIFNs), is stated by 

𝛤𝐶𝐼−𝑖 = ([𝓂𝛤𝑅𝑃−𝑖
− ,𝓂𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓂𝛤𝐼𝑃−𝑖

− ,𝓂𝛤𝐼𝑃−𝑖
+ ])

, [𝓃𝛤𝑅𝑃−𝑖
− , 𝓃𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓃𝛤𝐼𝑃−𝑖

− ,𝓃𝛤𝐼𝑃−𝑖
+ ])

) , 𝑖 = 1,2, … , 𝛴⏞. 
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For the given mathematical form of any two CI-VIFNs: 

𝛤𝐶𝐼−𝑖 = ([𝓂𝛤𝑅𝑃−𝑖
− ,𝓂𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓂𝛤𝐼𝑃−𝑖

− ,𝓂𝛤𝐼𝑃−𝑖
+ ])

, [𝓃𝛤𝑅𝑃−𝑖
− , 𝓃𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓃𝛤𝐼𝑃−𝑖

− ,𝓃𝛤𝐼𝑃−𝑖
+ ])

) , 𝑖 = 1,2. 

We have, 

𝛤𝐶𝐼−1⊕𝛤𝐶𝐼−2 =

(

 
 
[𝓂𝛤𝑅𝑃−1

− +𝓂𝛤𝑅𝑃−2
− −𝓂𝛤𝑅𝑃−1

− 𝓂𝛤𝑅𝑃−2
− ,𝓂𝛤𝑅𝑃−1

+ +𝓂𝛤𝑅𝑃−2
+ −𝓂𝛤𝑅𝑃−1

+ 𝓂𝛤𝑅𝑃−2
+ ]

𝑒𝑖2𝜋[𝓂𝛤𝐼𝑃−1
− +𝓂𝛤𝐼𝑃−2

− −𝓂𝛤𝐼𝑃−1
− 𝓂𝛤𝐼𝑃−2

− ,𝓂𝛤𝐼𝑃−1
+ +𝓂𝛤𝐼𝑃−2

+ −𝓂𝛤𝐼𝑃−1
+ 𝓂𝛤𝐼𝑃−2

+ ],

[𝓃𝛤𝑅𝑃−1
− 𝓃𝛤𝑅𝑃−2

− , 𝓃𝛤𝑅𝑃−1
+ 𝓃𝛤𝑅𝑃−2

+ ]𝑒𝑖2𝜋[𝓃𝛤𝐼𝑃−1
− 𝓃𝛤𝐼𝑃−2

− ,𝓃𝛤𝐼𝑃−1
+ 𝓃𝛤𝐼𝑃−2

+ ]

)

 
 

 (2) 

𝛤𝐶𝐼−1⊗𝛤𝐶𝐼−2 =

(

 
[𝓂𝛤𝑅𝑃−1

− 𝓂𝛤𝑅𝑃−2
− ,𝓂𝛤𝑅𝑃−1

+ 𝓂𝛤𝑅𝑃−2
+ ]𝑒𝑖2𝜋[𝓂𝛤𝐼𝑃−1

− 𝓂𝛤𝐼𝑃−2
− ,𝓂𝛤𝐼𝑃−1

+ 𝓂𝛤𝐼𝑃−2
+ ],

[𝓃𝛤𝑅𝑃−1
− +𝓃𝛤𝑅𝑃−2

− −𝓃𝛤𝑅𝑃−1
− 𝓃𝛤𝑅𝑃−2

− , 𝓃𝛤𝑅𝑃−1
+ +𝓃𝛤𝑅𝑃−2

+ −𝓃𝛤𝑅𝑃−1
+ 𝓃𝛤𝑅𝑃−2

+ ]

𝑒𝑖2𝜋[𝓃𝛤𝐼𝑃−1
− +𝓃𝛤𝐼𝑃−2

− −𝓃𝛤𝐼𝑃−1
− 𝓃𝛤𝐼𝑃−2

− ,𝓃𝛤𝐼𝑃−1
+ +𝓃𝛤𝐼𝑃−2

+ −𝓃𝛤𝐼𝑃−1
+ 𝓃𝛤𝐼𝑃−2

+ ] )

    (3) 

Φ𝑆𝐶𝛤𝐶𝐼−1 =

(
[1 − (1 −𝓂𝛤𝑅𝑃−1

− )
Φ𝑆𝐶
, 1 − (1 −𝓂𝛤𝑅𝑃−1

+ )
Φ𝑆𝐶
] 𝑒
𝑖2𝜋[1−(1−𝓂𝛤𝐼𝑃−1

− )
Φ𝑆𝐶

,1−(1−𝓂𝛤𝐼𝑃−1
+ )

Φ𝑆𝐶
]
,

[𝓃−𝛤𝑅𝑃−1
Φ𝑆𝐶 , 𝓃+𝛤𝑅𝑃−1

Φ𝑆𝐶 ]𝑒
𝑖2𝜋[𝓃−𝛤𝐼𝑃−1

Φ𝑆𝐶 ,𝓃+𝛤𝐼𝑃−1
Φ𝑆𝐶 ]

)      (4) 

𝛤𝐶𝐼−1
Φ𝑆𝐶 = (

[𝓂−
𝛤𝑅𝑃−1

Φ𝑆𝐶 ,𝓂+
𝛤𝑅𝑃−1

Φ𝑆𝐶 ]𝑒
𝑖2𝜋[𝓂−𝛤𝐼𝑃−1

Φ𝑆𝐶 ,𝓂+𝛤𝐼𝑃−1
Φ𝑆𝐶 ]

,

[1 − (1 − 𝓃𝛤𝑅𝑃−1
− )

Φ𝑆𝐶
, 1 − (1 − 𝓃𝛤𝑅𝑃−1

+ )
Φ𝑆𝐶
] 𝑒
𝑖2𝜋[1−(1−𝓃𝛤𝐼𝑃−1

− )
Φ𝑆𝐶

,1−(1−𝓃𝛤𝐼𝑃−1
+ )

Φ𝑆𝐶
]
). (5) 

Definition 2. [27] For the given mathematical form of any two CI-VIFNs: 

𝛤𝐶𝐼−𝑖 = ([𝓂𝛤𝑅𝑃−𝑖
− ,𝓂𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓂𝛤𝐼𝑃−𝑖

− ,𝓂𝛤𝐼𝑃−𝑖
+ ])

, [𝓃𝛤𝑅𝑃−𝑖
− , 𝓃𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓃𝛤𝐼𝑃−𝑖

− ,𝓃𝛤𝐼𝑃−𝑖
+ ])

) , 𝑖 = 1,2, 

the SV and AV are diagnosed as 

𝜁(̿𝛤𝐶𝐼−1) =
1

4
(𝓂𝛤𝑅𝑃−1

− −𝓃𝛤𝑅𝑃−1
− +𝓂𝛤𝐼𝑃−1

− −𝓃𝛤𝐼𝑃−1
− +𝓂𝛤𝑅𝑃−1

+ −𝓃𝛤𝑅𝑃−1
+ +𝓂𝛤𝐼𝑃−1

+ −𝓃𝛤𝐼𝑃−1
+ ),  (6) 

𝔉̿(𝛤𝐶𝐼−1) =
1

4
(𝓂𝛤𝑅𝑃−1

− +𝓃𝛤𝑅𝑃−1
− +𝓂𝛤𝐼𝑃−1

− +𝓃𝛤𝐼𝑃−1
− +𝓂𝛤𝑅𝑃−1

+ +𝓃𝛤𝑅𝑃−1
+ +𝓂𝛤𝐼𝑃−1

+ +𝓃𝛤𝐼𝑃−1
+ ).  (7) 

It is clear that 𝜁(̿𝛤𝐶𝐼−1) ∈ [−1,1], and 𝔉̿(𝛤𝐶𝐼−1) ∈ [0,1]. Some relations for Eqs (6) and (7) are 

diagnosed here: 

1) 𝛤𝐶𝐼−1 > 𝛤𝐶𝐼−2, if 𝜁(̿𝛤𝐶𝐼−1) > 𝜁(̿𝛤𝐶𝐼−2) or 𝔉̿(𝛤𝐶𝐼−1) > 𝔉̿(𝛤𝐶𝐼−2); 

2) 𝛤𝐶𝐼−1 < 𝛤𝐶𝐼−2, if 𝜁(̿𝛤𝐶𝐼−1) < 𝜁(̿𝛤𝐶𝐼−2) or 𝔉̿(𝛤𝐶𝐼−1) < 𝔉̿(𝛤𝐶𝐼−2); 

3) 𝛤𝐶𝐼−1 = 𝛤𝐶𝐼−2, if 𝜁(̿𝛤𝐶𝐼−1) = 𝜁(̿𝛤𝐶𝐼−2) or 𝔉̿(𝛤𝐶𝐼−1) = 𝔉̿(𝛤𝐶𝐼−2). 

Definition 3. [38] The mathematical expression 

𝜂 = {𝜂0, 𝜂1, 𝜂2, … , 𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿−1},                           (8) 



13600 

AIMS Mathematics  Volume 7, Issue 8, 13595–13632. 

is called linguistic term set (LTS) with an odd 𝑘𝑆𝐶̿̿ ̿̿  in the availability of the below points: 

1) If 𝑘𝑆𝐶̿̿ ̿̿ > 𝑘𝑆𝐶̿̿ ̿̿
′
, then 𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿ > 𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿

′; 

2) 𝑛𝑒𝑔(𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿) = 𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿
′ with 𝑘𝑆𝐶̿̿ ̿̿ + 𝑘𝑆𝐶̿̿ ̿̿

′
= 𝑘𝑆𝐶̿̿ ̿̿ + 1; 

3) If 𝑘𝑆𝐶̿̿ ̿̿ ≥ 𝑘𝑆𝐶̿̿ ̿̿
′
, max (𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿, 𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿

′) = 𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿, and if 𝑘𝑆𝐶̿̿ ̿̿ ≤ 𝑘𝑆𝐶̿̿ ̿̿
′
, max (𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿, 𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿

′) = 𝜂𝑘𝑆𝐶̿̿ ̿̿ ̿. 

Furthermore, 𝜂 = {𝜂𝑖: 𝑖 ∈ 𝑅} , stated linguistic variables (LVs). A mathematical form 𝜂 =

[𝜂𝜇𝑖 , 𝜂𝜁𝑠], 𝜂𝜇𝑖 , 𝜂𝜁𝑠 ∈ 𝜂(𝑖 ≤ 𝑠), with 𝜂𝜇𝑖 , 𝜂𝜁𝑠, is called a uncertain linguistic variable (ULV) [40]. For the 

given mathematical form of any two ULVs 𝜂1 = [𝜂𝜇1 , 𝜂𝜁1] and 𝜂2 = [𝜂𝜇2 , 𝜂𝜁2] contained in 𝜂[0,ℎ], we 

have 

𝜂1⊕𝜂2 = [𝜂𝜇1 , 𝜂𝜁1] ⊕ [𝜂𝜇2 , 𝜂𝜁2] = [𝜂𝜇1+𝜇2−
𝜇1𝜇2
ℎ
, 𝜂
𝜁1+𝜁2−

𝜁1𝜁2
ℎ

],             (9) 

𝜂1⊗𝜂2 = [𝜂𝜇1 , 𝜂𝜁1] ⊗ [𝜂𝜇2 , 𝜂𝜁2] = [𝜂𝜇1×𝜇2
ℎ
, 𝜂𝜁1×𝜁2

ℎ

],               (10) 

Φ𝑆𝐶𝜂1 = Φ𝑆𝐶[𝜂𝜇1 , 𝜂𝜁1] = [𝜂ℎ(1−(1−𝜇1
ℎ
)
Φ𝑆𝐶

)
, 𝜂
ℎ(1−(1−

𝜁1
ℎ
)
Φ𝑆𝐶

)
],           (11) 

𝜂1
Φ𝑆𝐶 = [𝜂

ℎ(
𝜇1
ℎ
)
Φ𝑆𝐶 , 𝜂

ℎ(
𝜁1
ℎ
)
Φ𝑆𝐶].                        (12) 

Definition 4. [41] The mathematical expression 

𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼−1, 𝛤𝐶𝐼−2, … , 𝛤𝐶𝐼−𝛴⏞) = (
2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤𝐶𝐼−𝑖

𝓇𝑆𝐶𝛤𝐶𝐼−𝔰
𝓈𝑆𝐶𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
,      (13) 

is called an HM operator, and it has the mathematical form: 𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶: Θ𝛴⏞ → Θ, by 

𝐻𝑀(𝛤𝐶𝐼−1, 𝛤𝐶𝐼−2, … , 𝛤𝐶𝐼−𝛴⏞) = (
2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤𝐶𝐼−𝑖𝛤𝐶𝐼−𝔰

𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 ),             (14) 

is the HM operator. 

3. Complex interval-valued intuitionistic uncertain linguistic variables 

This analysis diagnoses a well-known theory of CI-VIUL settings as a powerful and capable tool 

to handle an ambiguous sort of theories. Furthermore, to enhance the features of the CI-VIUL 

information, we diagnose the algebraic laws, SV and AV for CI-VIUL settings. 

Definition 5. The mathematical expression 

𝛤𝐶𝐼𝑈 = {([𝜂𝜇𝑖 , 𝜂𝜁𝔰], (𝓂𝛤𝐶𝐼𝑈(𝔨̆), 𝓃𝛤𝐶𝐼𝑈(𝔨̆))) : 𝔨̆ ∈ 𝒳𝑈𝑁𝐼
⏞  }.               (15) 

is called a CI-VIUL set, where 
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𝓂𝛤𝐶𝐼𝑈(𝔨̆) = [𝓂𝛤𝑅𝑃
− (𝔨̆),𝓂𝛤𝑅𝑃

+ (𝔨̆)]𝑒𝑖2𝜋([𝓂𝛤𝐼𝑃
− (𝔨̆),𝓂𝛤𝐼𝑃

+ (𝔨̆)])
 

and 

𝓃𝛤𝐶𝐼𝑈(𝔨̆) = [𝓃𝛤𝑅𝑃
− (𝔨̆), 𝓃𝛤𝑅𝑃

+ (𝔨̆)]𝑒𝑖2𝜋([𝓃𝛤𝐼𝑃
− (𝔨̆),𝓃𝛤𝐼𝑃

+ (𝔨̆)])
. 

The major tools of CI-VIUL settings are 

0 ≤ 𝓂𝛤𝑅𝑃
+ (𝔨̆) + 𝓃𝛤𝑅𝑃

+ (𝔨̆) ≤ 1 

and 

0 ≤ 𝓂𝛤𝐼𝑃
+ (𝔨̆) + 𝓃𝛤𝐼𝑃

+ (𝔨̆) ≤ 1 

with 

𝜂𝜇𝑖 , 𝜂𝜁𝔰 ∈ 𝜂̂(𝑖 ≤ 𝔰). 

The mathematical form, 

ℒ𝛤𝐶𝐼𝑈(𝔨̆) = [ℒ𝛤𝑅𝑃
− (𝔨̆), ℒ𝛤𝑅𝑃

+ (𝔨̆)]𝑒𝑖2𝜋([ℒ𝛤𝐼𝑃
− (𝔨̆),ℒ𝛤𝐼𝑃

+ (𝔨̆)]) = [(1 −𝓂𝛤𝑅𝑃
− (𝔨̆) − 𝓃𝛤𝑅𝑃

− (𝔨̆)) , (1 −𝓂𝛤𝑅𝑃
+ (𝔨̆) −

𝓃𝛤𝑅𝑃
+ (𝔨̆))] 𝑒

𝑖2𝜋[(1−𝓂𝛤𝐼𝑃
− (𝔨̆)−𝓃𝛤𝐼𝑃

− (𝔨̆)),(1−𝓂𝛤𝐼𝑃
+ (𝔨̆)−𝓃𝛤𝐼𝑃

+ (𝔨̆))]
, 

diagnoses the refusal grade and CI-VIULNs stated by 

𝛤𝐶𝐼𝑈−𝑖 =

([𝜂𝜇𝑖 , 𝜂𝜁𝔰], ([𝓂𝛤𝑅𝑃−𝑖
− ,𝓂𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓂𝛤𝐼𝑃−𝑖

− ,𝓂𝛤𝐼𝑃−𝑖
+ ])

, [𝓃𝛤𝑅𝑃−𝑖
− , 𝓃𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓃𝛤𝐼𝑃−𝑖

− ,𝓃𝛤𝐼𝑃−𝑖
+ ])

)) , 𝑖, 𝔰 =

1,2, … , 𝛴⏞. 

For the given mathematical form of any two CI-VIULNs 

𝛤𝐶𝐼𝑈−𝑖 =

([𝜂𝜇𝑖 , 𝜂𝜁𝔰], ([𝓂𝛤𝑅𝑃−𝑖
− ,𝓂𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓂𝛤𝐼𝑃−𝑖

− ,𝓂𝛤𝐼𝑃−𝑖
+ ])

, [𝓃𝛤𝑅𝑃−𝑖
− , 𝓃𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓃𝛤𝐼𝑃−𝑖

− ,𝓃𝛤𝐼𝑃−𝑖
+ ])

)) , 𝑖 = 1,2. 

We have, 

𝛤𝐶𝐼𝑈−1⊕𝛤𝐶𝐼𝑈−2 =

(

 
 
 
 

[𝜂𝜇1+𝜇2−
𝜇1𝜇2
ℎ
, 𝜂
𝜁1+𝜁2−

𝜁1𝜁2
ℎ

] ,

(

 
 
[𝓂𝛤𝑅𝑃−1

− +𝓂𝛤𝑅𝑃−2
− −𝓂𝛤𝑅𝑃−1

− 𝓂𝛤𝑅𝑃−2
− ,𝓂𝛤𝑅𝑃−1

+ +𝓂𝛤𝑅𝑃−2
+ −𝓂𝛤𝑅𝑃−1

+ 𝓂𝛤𝑅𝑃−2
+ ]

𝑒𝑖2𝜋[𝓂𝛤𝐼𝑃−1
− +𝓂𝛤𝐼𝑃−2

− −𝓂𝛤𝐼𝑃−1
− 𝓂𝛤𝐼𝑃−2

− ,𝓂𝛤𝐼𝑃−1
+ +𝓂𝛤𝐼𝑃−2

+ −𝓂𝛤𝐼𝑃−1
+ 𝓂𝛤𝐼𝑃−2

+ ],

[𝓃𝛤𝑅𝑃−1
− 𝓃𝛤𝑅𝑃−2

− , 𝓃𝛤𝑅𝑃−1
+ 𝓃𝛤𝑅𝑃−2

+ ]𝑒𝑖2𝜋[𝓃𝛤𝐼𝑃−1
− 𝓃𝛤𝐼𝑃−2

− ,𝓃𝛤𝐼𝑃−1
+ 𝓃𝛤𝐼𝑃−2

+ ]

)

 
 

)

 
 
 
 

,        (16) 
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𝛤𝐶𝐼𝑈−1⊗𝛤𝐶𝐼𝑈−2 = 

(

 
 
 
 

[𝜂𝜇1×𝜇2
ℎ
, 𝜂𝜁1×𝜁2

ℎ

] ,

(

 
[𝓂𝛤𝑅𝑃−1

− 𝓂𝛤𝑅𝑃−2
− ,𝓂𝛤𝑅𝑃−1

+ 𝓂𝛤𝑅𝑃−2
+ ]𝑒𝑖2𝜋[𝓂𝛤𝐼𝑃−1

− 𝓂𝛤𝐼𝑃−2
− ,𝓂𝛤𝐼𝑃−1

+ 𝓂𝛤𝐼𝑃−2
+ ],

[𝓃𝛤𝑅𝑃−1
− +𝓃𝛤𝑅𝑃−2

− −𝓃𝛤𝑅𝑃−1
− 𝓃𝛤𝑅𝑃−2

− , 𝓃𝛤𝑅𝑃−1
+ +𝓃𝛤𝑅𝑃−2

+ −𝓃𝛤𝑅𝑃−1
+ 𝓃𝛤𝑅𝑃−2

+ ]

𝑒𝑖2𝜋[𝓃𝛤𝐼𝑃−1
− +𝓃𝛤𝐼𝑃−2

− −𝓃𝛤𝐼𝑃−1
− 𝓃𝛤𝐼𝑃−2

− ,𝓃𝛤𝐼𝑃−1
+ +𝓃𝛤𝐼𝑃−2

+ −𝓃𝛤𝐼𝑃−1
+ 𝓃𝛤𝐼𝑃−2

+ ] )

 

)

 
 
 
 

,        (17) 

Φ𝑆𝐶𝛤𝐶𝐼𝑈−1 =

(

 
 
 
 
 [𝜂

ℎ(1−(1−
𝜇1
ℎ
)
Φ𝑆𝐶

)
, 𝜂
ℎ(1−(1−

𝜁1
ℎ
)
Φ𝑆𝐶

)
] ,

(
[1 − (1 −𝓂𝛤𝑅𝑃−1

− )
Φ𝑆𝐶
, 1 − (1 −𝓂𝛤𝑅𝑃−1

+ )
Φ𝑆𝐶
] 𝑒
𝑖2𝜋[1−(1−𝓂𝛤𝐼𝑃−1

− )
Φ𝑆𝐶

,1−(1−𝓂𝛤𝐼𝑃−1
+ )

Φ𝑆𝐶
]
,

[𝓃−𝛤𝑅𝑃−1
Φ𝑆𝐶 , 𝓃+𝛤𝑅𝑃−1

Φ𝑆𝐶 ]𝑒
𝑖2𝜋[𝓃−𝛤𝐼𝑃−1

Φ𝑆𝐶 ,𝓃+𝛤𝐼𝑃−1
Φ𝑆𝐶 ]

)

)

 
 
 
 
 

,  (18) 

𝛤𝐶𝐼𝑈−1
Φ𝑆𝐶 = 

(

 
 
 
 

[𝜂
ℎ(
𝜇1
ℎ
)
Φ𝑆𝐶 , 𝜂

ℎ(
𝜁1
ℎ
)
Φ𝑆𝐶] ,

(
[𝓂−

𝛤𝑅𝑃−1

Φ𝑆𝐶 ,𝓂+
𝛤𝑅𝑃−1

Φ𝑆𝐶 ]𝑒
𝑖2𝜋[𝓂−𝛤𝐼𝑃−1

Φ𝑆𝐶 ,𝓂+𝛤𝐼𝑃−1
Φ𝑆𝐶 ]

,

[1 − (1 − 𝓃𝛤𝑅𝑃−1
− )

Φ𝑆𝐶
, 1 − (1 − 𝓃𝛤𝑅𝑃−1

+ )
Φ𝑆𝐶
] 𝑒
𝑖2𝜋[1−(1−𝓃𝛤𝐼𝑃−1

− )
Φ𝑆𝐶

,1−(1−𝓃𝛤𝐼𝑃−1
+ )

Φ𝑆𝐶
]
)

)

 
 
 
 

.  (19) 

Definition 6. For the given mathematical form of any two CI-VIULNs  

𝛤𝐶𝐼𝑈−1 = ([𝜂𝜇1 , 𝜂𝜁1], ([𝓂𝛤𝑅𝑃−𝑖
− ,𝓂𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓂𝛤𝐼𝑃−𝑖

− ,𝓂𝛤𝐼𝑃−𝑖
+ ])

, [𝓃𝛤𝑅𝑃−𝑖
− , 𝓃𝛤𝑅𝑃−𝑖

+ ]𝑒
𝑖2𝜋([𝓃𝛤𝐼𝑃−𝑖

− ,𝓃𝛤𝐼𝑃−𝑖
+ ])

)), 

the SV and AV are diagnosed as 

𝜁(̿𝛤𝐶𝐼𝑈−1) =
1

max(𝜇1,𝜁1)
(𝜇1 + 𝜁1) ×

1

4
(
𝓂𝛤𝑅𝑃−1
− −𝓃𝛤𝑅𝑃−1

− +𝓂𝛤𝐼𝑃−1
− −𝓃𝛤𝐼𝑃−1

−

+𝓂𝛤𝑅𝑃−1
+ −𝓃𝛤𝑅𝑃−1

+ +𝓂𝛤𝐼𝑃−1
+ −𝓃𝛤𝐼𝑃−1

+ ),     (20) 

𝔉̿(𝛤𝐶𝐼𝑈−1) =
1

max(𝜇1,𝜁1)
(𝜇1 + 𝜁1) ×

1

4
(
𝓂𝛤𝑅𝑃−1
− +𝓃𝛤𝑅𝑃−1

− +𝓂𝛤𝐼𝑃−1
− +𝓃𝛤𝐼𝑃−1

−

+𝓂𝛤𝑅𝑃−1
+ +𝓃𝛤𝑅𝑃−1

+ +𝓂𝛤𝐼𝑃−1
+ +𝓃𝛤𝐼𝑃−1

+ ).     (21) 

It is clear that 𝜁(̿𝛤𝐶𝐼𝑈−1) ∈ [−1,1] and 𝔉̿(𝛤𝐶𝐼𝑈−1) ∈ [0,1]. Some relations for Eqs (20) and (21) 

are diagnosed as 

1) 𝛤𝐶𝐼𝑈−1 > 𝛤𝐶𝐼𝑈−2, if 𝜁(̿𝛤𝐶𝐼𝑈−1) > 𝜁(̿𝛤𝐶𝐼𝑈−2) or 𝔉̿(𝛤𝐶𝐼𝑈−1) > 𝔉̿(𝛤𝐶𝐼𝑈−2); 

2) 𝛤𝐶𝐼𝑈−1 < 𝛤𝐶𝐼𝑈−2, if 𝜁(̿𝛤𝐶𝐼𝑈−1) < 𝜁(̿𝛤𝐶𝐼𝑈−2) or 𝔉̿(𝛤𝐶𝐼𝑈−1) < 𝔉̿(𝛤𝐶𝐼𝑈−2); 

3) 𝛤𝐶𝐼𝑈−1 = 𝛤𝐶𝐼𝑈−2, if 𝜁(̿𝛤𝐶𝐼𝑈−1) = 𝜁(̿𝛤𝐶𝐼𝑈−2) or 𝔉̿(𝛤𝐶𝐼𝑈−1) = 𝔉̿(𝛤𝐶𝐼𝑈−2). 



13603 

AIMS Mathematics  Volume 7, Issue 8, 13595–13632. 

4. Arithmetic/geometric Heronian mean operators for CI-VIUL settings 

The HM operator is a massive dominant operator that can suggest information on 

interrelationships. However, in the past, it was applied to the theory and for the purposes of 

discrimination and resulted in many exploratory inventions. With the availability of a superior HM 

operator, we develop the CI-VIULAHM operator, CI-VIULWAHM operator, CI-VIULGHM operator, 

CI-VIULWGHM operator and their well-known achievements in the form of some results, important 

properties, and specific cases. 

Definition 7. The CI-VIULAHM operator is simplified and analyzed by 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶: Θ𝛴⏞ → Θ, by 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = (
2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
. (22) 

Using Eq (22), we diagnosed the result. 

Theorem 1. Considering Definition 5 and Eq (22), we diagnose 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

𝜂

(1−(∏ ∏ (1−
𝜇
𝑖
𝓇𝑆𝐶𝜇𝔰

𝓈𝑆𝐶

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

, 𝜂

(1−(∏ ∏ (1−
𝜁
𝑖
𝓇𝑆𝐶𝜁𝔰

𝓈𝑆𝐶

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
(1 − (∏ ∏ (1 −𝓂−

𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓂−
𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

,

(1 − (∏ ∏ (1 −𝓂+
𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓂+
𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 

(1−(∏ ∏ (1−𝓂−𝛤𝐼𝑃−𝑖

𝓇𝑆𝐶 𝓂−𝛤𝐼𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

,

(1−(∏ ∏ (1−𝓂+𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 𝓂+𝛤𝐼𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
(1 − (1 − (∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

− )
𝓇𝑆𝐶
(1 − 𝓃𝛤𝑅𝑃−𝔰

− )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

) ,

(1 − (1 − (∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
+ )

𝓇𝑆𝐶
(1 − 𝓃𝛤𝑅𝑃−𝔰

+ )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

)

]
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 

(

 
 
1−(1−(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
𝓇𝑆𝐶

(1−𝓃𝛤𝐼𝑃−𝔰
− )

𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 
,

(

 
 
1−(1−(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

+ )
𝓇𝑆𝐶

(1−𝓃𝛤𝐼𝑃−𝔰
+ )

𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (23) 

Proof. By using Definition 5, we achieve 

𝛤𝐶𝐼𝑈−𝑖
𝓇𝑆𝐶 =

(

 
 
 

[𝜂
ℎ(
𝜇𝑖
ℎ
)
𝓇𝑆𝐶 , 𝜂

ℎ(
𝜁𝑖
ℎ
)
𝓇𝑆𝐶] ,

(
[𝓂−

𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 ,𝓂+
𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 ]𝑒
𝑖2𝜋[𝓂−𝛤𝐼𝑃−𝑖

𝓇𝑆𝐶 ,𝓂+𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 ]

,

[1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
− )

𝓇𝑆𝐶
, 1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

+ )
𝓇𝑆𝐶
]𝑒
𝑖2𝜋[1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
𝓇𝑆𝐶

,1−(1−𝓃𝛤𝐼𝑃−𝑖
+ )

𝓇𝑆𝐶
]
)

)

 
 
 

, 

𝛤𝐶𝐼𝑈−𝔰
𝓇𝑆𝐶 =

(

 
 
 

[𝜂
ℎ(
𝜇𝑠
ℎ
)
𝓇𝑆𝐶 , 𝜂

ℎ(
𝜁𝑠
ℎ
)
𝓇𝑆𝐶] ,

(
[𝓂−

𝛤𝑅𝑃−𝔰

𝓇𝑆𝐶 ,𝓂+
𝛤𝑅𝑃−𝔰

𝓇𝑆𝐶 ]𝑒
𝑖2𝜋[𝓂−𝛤𝐼𝑃−𝔰

𝓇𝑆𝐶 ,𝓂+𝛤𝐼𝑃−𝔰
𝓇𝑆𝐶 ]

,

[1 − (1 − 𝓃𝛤𝑅𝑃−𝔰
− )

𝓇𝑆𝐶
, 1 − (1 − 𝓃𝛤𝑅𝑃−𝔰

+ )
𝓇𝑆𝐶
]𝑒
𝑖2𝜋[1−(1−𝓃𝛤𝐼𝑃−𝔰

− )
𝓇𝑆𝐶

,1−(1−𝓃𝛤𝐼𝑃−𝔰
+ )

𝓇𝑆𝐶
]
)

)

 
 
 

. 



13605 

AIMS Mathematics  Volume 7, Issue 8, 13595–13632. 

Then, 

∑ ∑ 𝛤𝐶𝐼𝑈−𝑖
𝓇𝑆𝐶 𝛤𝐶𝐼𝑈−𝔰

𝓈𝑆𝐶𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 =

(

 
 
 
 
 
 
 
 
 [𝜂

(1−∏ ∏ (1−
𝜇
𝑖
𝓇𝑆𝐶𝜇𝔰

𝓈𝑆𝐶

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

, 𝜂
(1−∏ ∏ (1−

𝜁
𝑖
𝓇𝑆𝐶𝜁𝔰

𝓈𝑆𝐶

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

] ,

(

 
 
 
 
 

[1 − (∏ ∏ (1 −𝓂−
𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓂−
𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 ) , 1 − (∏ ∏ (1 −𝓂+

𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓂+
𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )]

𝑒
𝑖2𝜋[1−(∏ ∏ (1−𝓂−𝛤𝐼𝑃−𝑖

𝓇𝑆𝐶 𝓂−𝛤𝐼𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 ),1−(∏ ∏ (1−𝓂+𝛤𝐼𝑃−𝑖

𝓇𝑆𝐶 𝓂+𝛤𝐼𝑃−𝔰
𝓈𝑆𝐶 )𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )]

,

[
∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

− )
𝓇𝑆𝐶
(1 − 𝓃𝛤𝑅𝑃−𝔰

− )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 ,

∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
+ )

𝓇𝑆𝐶
(1 − 𝓃𝛤𝑅𝑃−𝔰

+ )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1

]

𝑒
𝑖2𝜋[∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
𝓇𝑆𝐶

(1−𝓃𝛤𝐼𝑃−𝔰
− )

𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 ,∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

+ )
𝓇𝑆𝐶

(1−𝓃𝛤𝐼𝑃−𝔰
+ )

𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 ] )

 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

, 

Thus, 

2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 

𝜂

1−(∏ ∏ (1−
𝜇
𝑖
𝓇𝑆𝐶𝜇𝔰

𝓈𝑆𝐶

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

, 𝜂

1−(∏ ∏ (1−
𝜁
𝑖
𝓇𝑆𝐶𝜁𝔰

𝓈𝑆𝐶

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

]
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 1 − (∏ ∏ (1 −𝓂−

𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓂−
𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1) ,

1 − (∏ ∏ (1 −𝓂+
𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓂+
𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

]
 
 
 

𝑒
𝑖2𝜋[1−(∏ ∏ (1−𝓂−𝛤𝐼𝑃−𝑖

𝓇𝑆𝐶 𝓂−𝛤𝐼𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
,1−(∏ ∏ (1−𝓂+𝛤𝐼𝑃−𝑖

𝓇𝑆𝐶 𝓂+𝛤𝐼𝑃−𝔰
𝓈𝑆𝐶 )𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
]

,

[
 
 
 (∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

− )
𝓇𝑆𝐶
(1 − 𝓃𝛤𝑅𝑃−𝔰

− )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1) ,

(∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
+ )

𝓇𝑆𝐶
(1 − 𝓃𝛤𝑅𝑃−𝔰

+ )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

]
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
𝓇𝑆𝐶

(1−𝓃𝛤𝐼𝑃−𝔰
− )

𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
,

(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖
+ )

𝓇𝑆𝐶
(1−𝓃𝛤𝐼𝑃−𝔰

+ )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = (
2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
=
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

𝜂

(1−(∏ ∏ (1−
𝜇
𝑖
𝓇𝑆𝐶𝜇𝔰

𝓈𝑆𝐶

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

, 𝜂

(1−(∏ ∏ (1−
𝜁
𝑖
𝓇𝑆𝐶𝜁𝔰

𝓈𝑆𝐶

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
(1 − (∏ ∏ (1 −𝓂−

𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓂−
𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

,

(1 − (∏ ∏ (1 −𝓂+
𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓂+
𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 

(1−(∏ ∏ (1−𝓂−𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 𝓂−𝛤𝐼𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1
𝓇𝑆𝐶+𝓈𝑆𝐶

,(1−(∏ ∏ (1−𝓂+𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 𝓂+𝛤𝐼𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 

,

[
 
 
 
 
 
 
(1 − (1 − (∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

− )
𝓇𝑆𝐶
(1 − 𝓃𝛤𝑅𝑃−𝔰

− )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

) ,

(1 − (1 − (∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
+ )

𝓇𝑆𝐶
(1 − 𝓃𝛤𝑅𝑃−𝔰

+ )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

)

]
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 

(

 
 
1−(1−(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
𝓇𝑆𝐶
(1−𝓃𝛤𝐼𝑃−𝔰

− )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 
,

(

 
 
1−(1−(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

+ )
𝓇𝑆𝐶
(1−𝓃𝛤𝐼𝑃−𝔰

+ )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Well-known and major properties, called idempotency, monotonicity and boundedness, for CI-

VIUL settings are investigated. 

Property 1. Using Eq (23), we discuss some properties such as those following. 

1) If 𝛤𝐶𝐼𝑈−𝑖 = 𝛤𝐶𝐼𝑈, then 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = 𝛤𝐶𝐼𝑈.            (24) 

2) If 𝜂𝜇𝑖
′ ≤ 𝜂𝜇𝑖, 𝜂𝜁𝔰 

′ ≤ 𝜂𝜁𝔰, 𝓂
−
𝛤𝑅𝑃−𝑖
′ ≤ 𝓂𝛤𝑅𝑃−𝑖

− , 𝓂−
𝛤𝐼𝑃−𝑖
′ ≤ 𝓂𝛤𝐼𝑃−𝑖

− , 𝓃−𝛤𝑅𝑃−𝑖
′ ≥ 𝓃𝛤𝑅𝑃−𝑖

− , 

𝓃−𝛤𝐼𝑃−𝑖
′ ≥ 𝓃𝛤𝐼𝑃−𝑖

− , and 𝓂+
𝛤𝑅𝑃−𝑖

′
≤ 𝓂𝛤𝑅𝑃−𝑖

+ , 𝓂+
𝛤𝐼𝑃−𝑖

′
≤ 𝓂𝛤𝐼𝑃−𝑖

+ , 𝓃+𝛤𝑅𝑃−𝑖
′

≥ 𝓃𝛤𝑅𝑃−𝑖
+ , 𝓃+𝛤𝐼𝑃−𝑖

′
≥

𝓃𝛤𝐼𝑃−𝑖
+ , then 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1
′ , 𝛤𝐶𝐼𝑈−2

′ , … , 𝛤
𝐶𝐼𝑈−𝛴⏞
′ ) 

≤ 𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞).                (25) 

3) If 𝛤𝐶𝐼𝑈−𝐴 = 𝑚𝑖𝑛(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞), and 𝛤𝐶𝐼𝑈−𝐵 = 𝑚𝑎𝑥(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞), 

then 

𝛤𝐶𝐼𝑈−𝐴 ≤ 𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀
𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) ≤ 𝛤𝐶𝐼𝑈−𝐵.        (26) 
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Proof. 1) If 𝛤𝐶𝐼𝑈−𝑖 = 𝛤𝐶𝐼𝑈 , 𝑖 = 1,2, … , 𝛴⏞, then 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = (
2

𝛴⏞ (𝛴⏞ + 1)
∑∑𝛤𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

 

= (
2

𝛴⏞ (𝛴⏞ + 1)
∑∑𝛤𝐶𝐼𝑈

𝓇𝑆𝐶𝛤𝐶𝐼𝑈
𝓈𝑆𝐶

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

= (
2

𝛴⏞ (𝛴⏞ + 1)
∑∑𝛤𝐶𝐼𝑈

𝓇𝑆𝐶+𝓈𝑆𝐶

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

 

= (𝛤𝐶𝐼𝑈
𝓇𝑆𝐶+𝓈𝑆𝐶)

1
𝓇𝑆𝐶+𝓈𝑆𝐶 = 𝛤𝐶𝐼𝑈 . 

2) If 𝜂𝜇𝑖
′ ≤ 𝜂𝜇𝑖, 𝜂𝜁𝔰 

′ ≤ 𝜂𝜁𝔰, 𝓂
−
𝛤𝑅𝑃−𝑖
′ ≤ 𝓂𝛤𝑅𝑃−𝑖

− , 𝓂−
𝛤𝐼𝑃−𝑖
′ ≤ 𝓂𝛤𝐼𝑃−𝑖

− , 𝓃−𝛤𝑅𝑃−𝑖
′ ≥ 𝓃𝛤𝑅𝑃−𝑖

− , 

𝓃−𝛤𝐼𝑃−𝑖
′ ≥ 𝓃𝛤𝐼𝑃−𝑖

− , and 𝓂+
𝛤𝑅𝑃−𝑖

′
≤ 𝓂𝛤𝑅𝑃−𝑖

+ , 𝓂+
𝛤𝐼𝑃−𝑖

′
≤ 𝓂𝛤𝐼𝑃−𝑖

+ , 𝓃+𝛤𝑅𝑃−𝑖
′

≥ 𝓃𝛤𝑅𝑃−𝑖
+ , 𝓃+𝛤𝐼𝑃−𝑖

′
≥

𝓃𝛤𝐼𝑃−𝑖
+ , then 

𝛤+
′
𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶
𝛤+

′
𝐶𝐼𝑈−𝔰

𝓈𝑆𝐶
≤ 𝛤+𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤+𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶  

⟹
2

𝛴⏞ (𝛴⏞ + 1)
∑∑𝛤+

′
𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶
𝛤+

′
𝐶𝐼𝑈−𝔰

𝓈𝑆𝐶

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

≤
2

𝛴⏞ (𝛴⏞ + 1)
∑∑𝛤+𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤+𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

 

⟹ (
2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤+

′
𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶
𝛤+

′
𝐶𝐼𝑈−𝔰

𝓈𝑆𝐶𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
≤ (

2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤+𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤+𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
. 

Thus, we acquire 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1
′ , 𝛤𝐶𝐼𝑈−2

′ , … , 𝛤
𝐶𝐼𝑈−𝛴⏞
′ ) ≤ 𝐶𝐼 −

𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞). 

3) If 𝛤𝐶𝐼𝑈−𝐴 = 𝑚𝑖𝑛(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞), and 𝛤𝐶𝐼𝑈−𝐵 = 𝑚𝑎𝑥(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞), 

then, using Property (1), we achieve 

𝛤𝐶𝐼𝑈−𝐴 ≤ 𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀
𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞). 

Then, 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) ≤ 𝛤𝐶𝐼𝑈−𝐵; 

thus, 

𝛤𝐶𝐼𝑈−𝐴 ≤ 𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀
𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) ≤ 𝛤𝐶𝐼𝑈−𝐵. 

Additionally, on the availability of parameters, we diagnose various sorts of specific cases: 
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1) If 𝓈𝑆𝐶 → 0 in Eq (23), then we get the CI-VIUL generalized linear descending weighted mean 

(CI-VIULGLDWM) operator, and we achieve 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,0(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = lim
𝓈𝑆𝐶→0

(
2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
=

(
2

𝛴⏞(𝛴⏞+1)
∑ 𝛤𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶
=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝜂

(

 
 
1−(∏ (1−

𝜇
𝑖
𝓇𝑆𝐶

ℎ
)

(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶

, 𝜂

(

 
 
1−(∏ (1−

𝜁
𝑖
𝓇𝑆𝐶

ℎ
)

(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶

]
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [(1 − (∏ (1 −𝓂−

𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 )
(𝛴⏞+1−𝑖)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓇𝑆𝐶

,(1 − (∏ (1 −𝓂+
𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 )
(𝛴⏞+1−𝑖)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓇𝑆𝐶

] 

𝑒

𝑖2𝜋

[
 
 
 
 

(1−(∏ (1−𝓂−𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 )

(𝛴⏞+1−𝑖)
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶

,(1−(∏ (1−𝓂+𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 )

(𝛴⏞+1−𝑖)𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶

]
 
 
 
 

,

[
 
 
 
 
 
 
 
 

(

 1 − (1 − (∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
− )

𝓇𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓇𝑆𝐶

)

 ,

(

 1 − (1 − (∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
+ )

𝓇𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓇𝑆𝐶

)

 

]
 
 
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 

(

  
 
1−(1−(∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
𝓇𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶

)

  
 
,

(

  
 
1−(1−(∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

+ )
𝓇𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶

)

  
 

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

2) If 𝓇𝑆𝐶 → 0 in Eq (23), then we get the CI-VIUL generalized linear ascending weighted mean 

(CI-VIULGLAWM) operator, and we achieve 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀0,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = lim
𝓇𝑆𝐶→0

(
2

𝛴⏞(𝛴⏞+1)
∑ ∑ 𝛤𝐶𝐼𝑈−𝑖

𝓇𝑆𝐶 𝛤𝐶𝐼𝑈−𝔰
𝓈𝑆𝐶𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
=

(
2

𝛴⏞(𝛴⏞+1)
∑ 𝛤𝐶𝐼𝑈−𝑖

𝓈𝑆𝐶𝛴⏞
𝑖=1 )

1

𝓈𝑆𝐶
=
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝜂

(

 
 
1−(∏ (1−

𝜇
𝑖
𝓈𝑆𝐶

ℎ
)

(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓈𝑆𝐶

, 𝜂

(

 
 
1−(∏ (1−

𝜁
𝑖
𝓈𝑆𝐶

ℎ
)

(𝛴⏞+1−𝑖)
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓈𝑆𝐶

]
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [(1 − (∏ (1 −𝓂−

𝛤𝑅𝑃−𝑖

𝓈𝑆𝐶 )
(𝛴⏞+1−𝑖)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓈𝑆𝐶

,(1 − (∏ (1 −𝓂+
𝛤𝑅𝑃−𝑖

𝓈𝑆𝐶 )
(𝛴⏞+1−𝑖)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓈𝑆𝐶

]

𝑒

𝑖2𝜋

[
 
 
 
 

(1−(∏ (1−𝓂−𝛤𝐼𝑃−𝑖
𝓈𝑆𝐶 )

(𝛴⏞+1−𝑖)
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓈𝑆𝐶

,(1−(∏ (1−𝓂+𝛤𝐼𝑃−𝑖
𝓈𝑆𝐶 )

(𝛴⏞+1−𝑖)𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓈𝑆𝐶

]
 
 
 
 

,

[
 
 
 
 
 
 
 
 

(

 1 − (1 − (∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
− )

𝓈𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓈𝑆𝐶

)

 ,

(

 1 − (1 − (∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
+ )

𝓈𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓈𝑆𝐶

)

 

]
 
 
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 

(

  
 
1−(1−(∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
𝓈𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓈𝑆𝐶

)

  
 
,

(

  
 
1−(1−(∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

+ )
𝓈𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓈𝑆𝐶

)

  
 

]
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

3) If 𝓇𝑆𝐶 = 𝓈𝑆𝐶 =
1

2
 in Eq (23), then we get the CI-VIUL basic HM (CI-VIULBHM) operator, and 

we achieve 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀
1

2
,
1

2(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 

𝜂

(

 
 
1−(∏ ∏ (1−

𝜇
𝑖

1
2𝜇𝔰

1
2

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

, 𝜂

(

 
 
1−(∏ ∏ (1−

𝜁
𝑖

1
2𝜁𝔰

1
2

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

]
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
(1 − (∏ ∏ (1 −𝓂−

𝛤𝑅𝑃−𝑖

1

2 𝓂−
𝛤𝑅𝑃−𝔰

1

2 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

) ,

(1 − (∏ ∏ (1 −𝓂+
𝛤𝑅𝑃−𝑖

1

2 𝓂+
𝛤𝑅𝑃−𝔰

1

2 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

]
 
 
 
 
 
 

𝑒

𝑖2𝜋[(1−(∏ ∏ (1−𝓂−𝛤𝐼𝑃−𝑖

1
2 𝓂−𝛤𝐼𝑃−𝔰

1
2 )𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
),(1−(∏ ∏ (1−𝓂+𝛤𝐼𝑃−𝑖

1
2 𝓂+𝛤𝐼𝑃−𝔰

1
2 )𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)]

,

[
 
 
 
 
(∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

− )
1

2(1 − 𝓃𝛤𝑅𝑃−𝔰
− )

1

2)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
,

(∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
+ )

1

2(1 − 𝓃𝛤𝑅𝑃−𝔰
+ )

1

2)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

]
 
 
 
 

𝑒

𝑖2𝜋[(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖
− )

1
2(1−𝓃𝛤𝐼𝑃−𝔰

− )

1
2)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
,(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

+ )

1
2(1−𝓃𝛤𝐼𝑃−𝔰

+ )

1
2)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
]

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

4) If 𝓇𝑆𝐶 = 𝓈𝑆𝐶 = 1 in Eq (23), then we get the CI-VIULBHM operator, and we achieve 
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𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐴𝐻𝑀1,1(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

𝜂

(1−(∏ ∏ (1−
𝜇𝑖
1𝜇𝔰

1

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2
, 𝜂

(1−(∏ ∏ (1−
𝜁𝑖
1𝜁𝔰
1

ℎ
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

]
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
(1 − (∏ ∏ (1 −𝓂−

𝛤𝑅𝑃−𝑖
1 𝓂−

𝛤𝑅𝑃−𝔰
1 )𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

2

,

(1 − (∏ ∏ (1 −𝓂+
𝛤𝑅𝑃−𝑖

1
𝓂+

𝛤𝑅𝑃−𝔰

1
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

2

]
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 

(1−(∏ ∏ (1−𝓂−𝛤𝐼𝑃−𝑖
1 𝓂−𝛤𝐼𝑃−𝔰

1 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

,(1−(∏ ∏ (1−𝓂+𝛤𝐼𝑃−𝑖
1

𝓂+𝛤𝐼𝑃−𝔰
1

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

]
 
 
 
 

,

[
 
 
 
 
 
 
(1 − (1 − (∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

− )
1
(1 − 𝓃𝛤𝑅𝑃−𝔰

− )
1
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

2

) ,

(1 − (1 − (∏ ∏ (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖
+ )

1
(1 − 𝓃𝛤𝑅𝑃−𝔰

+ )
1
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

2

)

]
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 

(

 
 
1−(1−(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
1
(1−𝓃𝛤𝐼𝑃−𝔰

− )
1
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

)

 
 
,

(

 
 
1−(1−(∏ ∏ (1−(1−𝓃𝛤𝐼𝑃−𝑖

+ )
1
(1−𝓃𝛤𝐼𝑃−𝔰

+ )
1
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

)

 
 

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Definition 8. The CI-VIULWAHM operator is simplified and diagnosed by 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝑊𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶: Θ𝛴⏞ → Θ, by 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝑊𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = 

(
2

𝛴⏞(𝛴⏞+1)
∑ ∑ (𝛴⏞ Ω̂𝑊−𝑖𝛤𝐶𝐼𝑈−𝑖)

𝓇𝑆𝐶
(𝛴⏞ Ω̂𝑊−𝔰𝛤𝐶𝐼𝑈−𝔰)

𝓈𝑆𝐶
𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
.         (27) 

The terms Ω̂𝑊 = {Ω̂𝑊−1, Ω̂𝑊−2, … , Ω̂𝑊−𝛴⏞} , shows the weight vector with ∑ Ω̂𝑊−𝑖
𝛴⏞
𝑖=1 = 1 , 

Ω̂𝑊−𝑖 ∈ [0,1]. 

Theorem 2. Using Definition 5 and Eq (27), we achieve 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝑊𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜂

(1−(∏ ∏ (1−(1−(1−
𝜇𝑖
ℎ
)
𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1−(1−
𝜇𝑠
ℎ
)
𝛴⏞Ω̂𝑊−𝔰

)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

,

𝜂

(

 
 
1−(∏ ∏ (1−(1−(1−

𝜁𝑖
ℎ
)
𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1−(1−
𝜁𝑠
ℎ
)
𝛴⏞Ω̂𝑊−𝔰

)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

(1 − (∏ ∏ (1 − (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
− )

𝛴⏞Ω̂𝑊−𝑖
)
𝓇𝑆𝐶

(1 − (1 −𝓂𝛤𝑅𝑃−𝔰
− )

𝛴⏞Ω̂𝑊−𝔰
)
𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓇𝑆𝐶+𝓈𝑆𝐶

,

(1 − (∏ ∏ (1 − (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
+ )

𝛴⏞Ω̂𝑊−𝑖
)
𝓇𝑆𝐶

(1 − (1 −𝓂𝛤𝑅𝑃−𝔰
+ )

𝛴⏞Ω̂𝑊−𝔰
)
𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 

(1−(∏ ∏ (1−(1−(1−𝓂𝛤𝐼𝑃−𝑖
− )

𝛴⏞Ω̂𝑊−𝑖
)

𝓇𝑆𝐶

(1−(1−𝓂𝛤𝐼𝑃−𝔰
− )

𝛴⏞Ω̂𝑊−𝔰
)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

,

(1−(∏ ∏ (1−(1−(1−𝓂𝛤𝐼𝑃−𝑖
+ )

𝛴⏞Ω̂𝑊−𝑖
)

𝓇𝑆𝐶

(1−(1−𝓂𝛤𝐼𝑃−𝔰
+ )

𝛴⏞Ω̂𝑊−𝔰
)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
(1 − (1 − (∏ ∏ (1 − (1 − 𝓃−𝛤𝑅𝑃−𝑖

𝛴⏞Ω̂𝑊−𝑖)
𝓇𝑆𝐶
(1 − 𝓃−𝛤𝑅𝑃−𝔰

𝛴⏞Ω̂𝑊−𝔰)
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓇𝑆𝐶+𝓈𝑆𝐶

) ,

(1 − (1 − (∏ ∏ (1 − (1 − 𝓃+𝛤𝑅𝑃−𝑖
𝛴⏞Ω̂𝑊−𝑖)

𝓇𝑆𝐶

(1 − 𝓃+𝛤𝑅𝑃−𝔰
𝛴⏞Ω̂𝑊−𝔰)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓇𝑆𝐶+𝓈𝑆𝐶

)

]
 
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 

(

 
 
1−(1−(∏ ∏ (1−(1−𝓃−𝛤𝐼𝑃−𝑖

𝛴⏞Ω̂𝑊−𝑖)

𝓇𝑆𝐶

(1−𝓃−𝛤𝐼𝑃−𝔰
𝛴⏞Ω̂𝑊−𝔰)

𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 
,

(

 
 
1−(1−(∏ ∏ (1−(1−𝓃+𝛤𝐼𝑃−𝑖

𝛴⏞Ω̂𝑊−𝑖)

𝓇𝑆𝐶

(1−𝓃+𝛤𝐼𝑃−𝔰
𝛴⏞Ω̂𝑊−𝔰)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 

]
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

(28) 

Proof. Omitted. 

Theorem 3. Prove that the CI-VIULAHM operator is a certain case of the CI-VIULWAHM operator. 

Proof. Assume 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝑊𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =

(
2

𝛴⏞(𝛴⏞+1)
∑ ∑ (𝛴⏞ Ω̂𝑊−𝑖𝛤𝐶𝐼𝑈−𝑖)

𝓇𝑆𝐶
(𝛴⏞ Ω̂𝑊−𝔰𝛤𝐶𝐼𝑈−𝔰)

𝓈𝑆𝐶
𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
. 

If Ω̂𝑊 = {
1

𝛴⏞
,
1

𝛴⏞
, … . ,

1

𝛴⏞
}, then 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝑊𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
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(
2

𝛴⏞(𝛴⏞+1)
∑ ∑ (𝛴⏞ Ω̂𝑊−𝑖𝛤𝐶𝐼𝑈−𝑖)

𝓇𝑆𝐶
(𝛴⏞ Ω̂𝑊−𝔰𝛤𝐶𝐼𝑈−𝔰)

𝓈𝑆𝐶
𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
=

(
2

𝛴⏞(𝛴⏞+1)
∑ ∑ (𝛴⏞

1

𝛴⏞
𝛤𝐶𝐼𝑈−𝑖)

𝓇𝑆𝐶
(𝛴⏞

1

𝛴⏞
𝛤𝐶𝐼𝑈−𝔰)

𝓈𝑆𝐶
𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
=

(
2

𝛴⏞(𝛴⏞+1)
∑ ∑ (𝛤𝐶𝐼𝑈−𝑖)

𝓇𝑆𝐶(𝛤𝐶𝐼𝑈−𝔰)
𝓈𝑆𝐶𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

1

𝓇𝑆𝐶+𝓈𝑆𝐶
= 𝐶𝐼 −

𝑉𝐼𝑈𝐿𝐴𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞). 

Definition 9. The CI-VIULGHM operator is simplified and diagnosed by 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶: Θ𝛴⏞ → Θ, by 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
1

𝓇𝑆𝐶+𝓈𝑆𝐶
(∏ ∏ (𝓇𝑆𝐶𝛤𝐶𝐼𝑈−𝑖 +

𝛴⏞
𝔰=1

𝛴⏞
𝑖=1

𝓈𝑆𝐶𝛤𝐶𝐼𝑈−𝔰))

2

𝛴⏞(𝛴⏞+1).                            (29) 

Theorem 4. Using Definition 5 and Eq (29), we achieve 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜂

(

 
 
1−(1−(∏ ∏ (1−(1−

𝜇𝑖
ℎ
)
𝓇𝑆𝐶

(1−
𝜇𝔰
ℎ
)
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 

,

𝜂

(

 
 
1−(1−(∏ ∏ (1−(1−

𝜁𝑖
ℎ
)
𝓇𝑆𝐶

(1−
𝜁𝔰
ℎ
)
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 

]
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
(1 − (1 − (∏ ∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖

− )
𝓇𝑆𝐶
(1 −𝓂𝛤𝑅𝑃−𝔰

− )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

) ,

(1 − (1 − (∏ ∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
+ )

𝓇𝑆𝐶
(1 −𝓂𝛤𝑅𝑃−𝔰

+ )
𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

)

]
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 

(

 
 
1−(1−(∏ ∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖

− )
𝓇𝑆𝐶

(1−𝓂𝛤𝐼𝑃−𝔰
− )

𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 
,

(

 
 
1−(1−(∏ ∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖

+ )
𝓇𝑆𝐶

(1−𝓂𝛤𝐼𝑃−𝔰
+ )

𝓈𝑆𝐶
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 

]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
(1 − (∏ ∏ (1 − 𝓃−𝛤𝑅𝑃−𝑖

𝓇𝑆𝐶 𝓃−𝛤𝑅𝑃−𝔰
𝓈𝑆𝐶 )𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

,

(1 − (∏ ∏ (1 − 𝓃+𝛤𝑅𝑃−𝑖
𝓇𝑆𝐶 𝓃+𝛤𝑅𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 

(1−(∏ ∏ (1−𝓃−𝛤𝐼𝑃−𝑖

𝓇𝑆𝐶 𝓃−𝛤𝐼𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

,

(1−(∏ ∏ (1−𝓃+𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 𝓃+𝛤𝐼𝑃−𝔰

𝓈𝑆𝐶 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (30) 

Proof. Omitted. 

Additionally, in the availability of parameters, we diagnose various sorts of specific cases: 

1) If 𝓈𝑆𝐶 → 0  in Eq (30), then we get the CI-VIUL generalized geometric linear descending 

weighted mean (CI-VIULGGLDWM) operator 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀𝓇𝑆𝐶,0(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = lim
𝓈𝑆𝐶→0

(
1

𝓇𝑆𝐶+𝓈𝑆𝐶
(∏ ∏ (𝓇𝑆𝐶𝛤𝐶𝐼𝑈−𝑖 +

𝛴⏞
𝔰=1

𝛴⏞
𝑖=1

𝓈𝑆𝐶𝛤𝐶𝐼𝑈−𝔰))

2

𝛴⏞(𝛴⏞+1)) = (
1

𝓇𝑆𝐶
(∏ 𝓇𝑆𝐶𝛤𝐶𝐼𝑈−𝑖

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)) =
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝜂

(

 
 
1−(1−(∏ (1−(1−

𝜇𝑖
ℎ
)
𝓇𝑆𝐶
)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1
𝓇𝑆𝐶

)

 
 

,

𝜂

(

 
 
1−(1−(∏ (1−(1−

𝜁𝑖
ℎ
)
𝓇𝑆𝐶
)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1
𝓇𝑆𝐶

)

 
 

]
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

(

 1 − (1 − (∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
− )

𝓇𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓇𝑆𝐶

)

 ,

(

 1 − (1 − (∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
+ )

𝓇𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓇𝑆𝐶

)

 

]
 
 
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 
 

(

  
 
1−(1−(∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖

− )
𝓇𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶

)

  
 
,

(

  
 
1−(1−(∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖

+ )
𝓇𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶

)

  
 

]
 
 
 
 
 
 
 
 
 
 

,

[(1 − (∏ (1 − 𝓃−𝛤𝑅𝑃−𝑖
𝓇𝑆𝐶 )

(𝛴⏞+1−𝑖)𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓇𝑆𝐶

,(1 − (∏ (1 − 𝓃+𝛤𝑅𝑃−𝑖
𝓇𝑆𝐶 )

(𝛴⏞+1−𝑖)𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓇𝑆𝐶

]

𝑒

𝑖2𝜋

[
 
 
 
 

(1−(∏ (1−𝓃−𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 )

(𝛴⏞+1−𝑖)
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶

,(1−(∏ (1−𝓃+𝛤𝐼𝑃−𝑖
𝓇𝑆𝐶 )

(𝛴⏞+1−𝑖)𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶

]
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

2) If 𝓇𝑆𝐶 → 0 in Eq (30), then we get the CI-VIUL generalized geometric linear ascending weighted 

mean (CI-VIULGGLAWM) operator 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀0,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = lim
𝓇𝑆𝐶→0

(
1

𝓇𝑆𝐶+𝓈𝑆𝐶
(∏ ∏ (𝓇𝑆𝐶𝛤𝐶𝐼𝑈−𝑖 +

𝛴⏞
𝔰=1

𝛴⏞
𝑖=1

𝓈𝑆𝐶𝛤𝐶𝐼𝑈−𝔰))

2

𝛴⏞(𝛴⏞+1)) = (
1

𝓈𝑆𝐶
(∏ 𝓈𝑆𝐶𝛤𝐶𝐼𝑈−𝑖

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)) =
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜂

(

 
 
1−(1−(∏ (1−(1−

𝜇𝑖
ℎ
)
𝓈𝑆𝐶
)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓈𝑆𝐶

)

 
 

,

𝜂

(

 
 
1−(1−(∏ (1−(1−

𝜁𝑖
ℎ
)
𝓈𝑆𝐶
)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓈𝑆𝐶

)

 
 

]
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

(

 1 − (1 − (∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
− )

𝓈𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓈𝑆𝐶

)

 ,

(

 1 − (1 − (∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
+ )

𝓈𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

1

𝓈𝑆𝐶

)

 

]
 
 
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 
 

(

  
 
1−

(

 1−(∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖
− )

𝓈𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 

1
𝓈𝑆𝐶

)

  
 
,

(

  
 
1−

(

 1−(∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖
+ )

𝓈𝑆𝐶
)
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 

1
𝓈𝑆𝐶

)

  
 

]
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
(1 − (∏ (1 − 𝓃−𝛤𝑅𝑃−𝑖

𝓈𝑆𝐶 )
(𝛴⏞+1−𝑖)𝛴⏞

𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓈𝑆𝐶

,

(1 − (∏ (1 − 𝓃+𝛤𝑅𝑃−𝑖
𝓈𝑆𝐶 )

(𝛴⏞+1−𝑖)𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

𝓈𝑆𝐶

]
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 

(1−(∏ (1−𝓃−𝛤𝐼𝑃−𝑖

𝓈𝑆𝐶 )
(𝛴⏞+1−𝑖)

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓈𝑆𝐶

,(1−(∏ (1−𝓃+𝛤𝐼𝑃−𝑖
𝓈𝑆𝐶 )

(𝛴⏞+1−𝑖)
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓈𝑆𝐶

]
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

3) If 𝓇𝑆𝐶 = 𝓈𝑆𝐶 =
1

2
 in Eq (30), then we get the CI-VIUL basic geometric HM (CI-VIULBGHM) 

operator 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀
1

2
,
1

2(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜂

(

 
 
1−(1−(∏ ∏ (1−(1−

𝜇𝑖
ℎ
)

1
2(1−

𝜇𝔰
ℎ
)

1
2)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

)

 
 

,

𝜂

(

  
 
1−

(

 
 
1−(∏ ∏ (1−(1−

𝜁𝑖
ℎ
)

1
2
(1−

𝜁𝔰
ℎ
)

1
2
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

)

  
 

]
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
(∏ ∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖

− )
1

2(1 −𝓂𝛤𝑅𝑃−𝔰
− )

1

2)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
,

(∏ ∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
+ )

1

2(1 −𝓂𝛤𝑅𝑃−𝔰
+ )

1

2)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

]
 
 
 
 

𝑒

𝑖2𝜋[(∏ ∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖
− )

1
2(1−𝓂𝛤𝐼𝑃−𝔰

− )

1
2)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
,(∏ ∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖

+ )

1
2(1−𝓂𝛤𝐼𝑃−𝔰

+ )

1
2)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
]

,

[
 
 
 
 
 
 
(1 − (∏ ∏ (1 − 𝓃−𝛤𝑅𝑃−𝑖

1

2 𝓃−𝛤𝑅𝑃−𝔰

1

2 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

) ,

(1 − (∏ ∏ (1 − 𝓃+𝛤𝑅𝑃−𝑖

1

2 𝓃+𝛤𝑅𝑃−𝔰

1

2 )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

]
 
 
 
 
 
 

𝑒

𝑖2𝜋[(1−(∏ ∏ (1−𝓃−𝛤𝐼𝑃−𝑖

1
2 𝓃−𝛤𝐼𝑃−𝔰

1
2 )𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
),(1−(∏ ∏ (1−𝓃+𝛤𝐼𝑃−𝑖

1
2 𝓃+𝛤𝐼𝑃−𝔰

1
2 )𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)]

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

4) If 𝓇𝑆𝐶 = 𝓈𝑆𝐶 = 1 in Eq (30), then we get the CI-VIUL geometric line HM (CI-VIULGLHM) 

operator 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀1,1(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜂

(

 
 
1−(1−(∏ ∏ (1−(1−

𝜇𝑖
ℎ
)
1
(1−

𝜇𝔰
ℎ
)
1
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

)

 
 

,

𝜂

(

 
 
1−(1−(∏ ∏ (1−(1−

𝜁𝑖
ℎ
)
1
(1−

𝜁𝔰
ℎ
)
1
)𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

)

 
 

]
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
(1 − (1 − ∏ ∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖

− )(1 −𝓂𝛤𝑅𝑃−𝔰
− ))𝛴⏞

𝔰=1
𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

2

,

(1 − (1 −∏ ∏ (1 − (1 −𝓂𝛤𝑅𝑃−𝑖
+ )(1 −𝓂𝛤𝑅𝑃−𝔰

+ ))𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1))

1

2

]
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 

(1−(1−∏ ∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖
− )(1−𝓂𝛤𝐼𝑃−𝔰

− ))𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

,

(1−(1−∏ ∏ (1−(1−𝓂𝛤𝐼𝑃−𝑖
+ )(1−𝓂𝛤𝐼𝑃−𝔰

+ ))𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

]
 
 
 
 
 
 
 
 

,

[(1 − (∏ ∏ (
1 −

𝓃𝛤𝑅𝑃−𝑖
− 𝓃𝛤𝑅𝑃−𝔰

− )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

2

, (1 − (∏ ∏ (
1 −

𝓃𝛤𝑅𝑃−𝑖
+ 𝓃𝛤𝑅𝑃−𝔰

+ )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1

2

]

𝑒

𝑖2𝜋

[
 
 
 
 

(1−(∏ ∏ (1−𝓃𝛤𝐼𝑃−𝑖
− 𝓃𝛤𝐼𝑃−𝔰

− )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

,(1−(∏ ∏ (1−𝓃𝛤𝐼𝑃−𝑖
+ 𝓃𝛤𝐼𝑃−𝔰

+ )𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
2

]
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Property 2. Using Eq (30), we discuss some properties, such as those following. 

1) If 𝛤𝐶𝐼𝑈−𝑖 = 𝛤𝐶𝐼𝑈, then 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = 𝛤𝐶𝐼𝑈.            (31) 

2) If 𝛤𝐶𝐼𝑈−𝑖
′ ≤ 𝛤𝐶𝐼𝑈−𝑖 , 𝑖 = 1,2, … , 𝛴⏞, where 

𝛤𝐶𝐼𝑈−𝑖
′ = ([𝜂𝜇𝑖

′ , 𝜂𝜁𝔰
′ ], (𝓂𝛤𝑅𝑃−𝑖

′ (𝔨̆)𝑒
𝑖2𝜋(𝓂𝛤𝐼𝑃−𝑖

′ (𝔨̆))
, 𝓃𝛤𝑅𝑃−𝑖
′ (𝔨̆)𝑒

𝑖2𝜋(𝓃𝛤𝐼𝑃−𝑖
′ (𝔨̆))

)) , 𝑖, 𝔰 = 1,2, … , 𝛴⏞, 

then 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1
′ , 𝛤𝐶𝐼𝑈−2

′ , … , 𝛤
𝐶𝐼𝑈−𝛴⏞
′ ) 

≤ 𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞).                (32) 

3) If 𝛤𝐶𝐼𝑈−𝐴 = 𝑚𝑖𝑛(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞),  and 𝛤𝐶𝐼𝑈−𝐵 = 𝑚𝑎𝑥(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) , 

then 

𝛤𝐶𝐼𝑈−𝐴 ≤ 𝐶𝐼 − 𝑉𝐼𝑈𝐿𝐺𝐻𝑀
𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) ≤ 𝛤𝐶𝐼𝑈−𝐵.        (33) 
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Proof. Omitted. 

Definition 10. The CI-VIULWGHM operator is simplified by 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝑊𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶: Θ𝛴⏞ → Θ, by 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝑊𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) =
1

𝓇𝑆𝐶+𝓈𝑆𝐶
(∏ ∏ ((𝓇𝑆𝐶𝛤𝐶𝐼𝑈−𝑖)

𝛴⏞Ω̂𝑊−𝑖 +𝛴⏞
𝔰=1

𝛴⏞
𝑖=1

(𝓈𝑆𝐶𝛤𝐶𝐼𝑈−𝔰)
𝛴⏞Ω̂𝑊−𝔰))

2

𝛴⏞(𝛴⏞+1).                            (34) 

The term Ω̂𝑊 = {Ω̂𝑊−1, Ω̂𝑊−2, … , Ω̂𝑊−𝛴⏞}  shows the weight vector with ∑ Ω̂𝑊−𝑖
𝛴⏞
𝑖=1 = 1 , 

Ω̂𝑊−𝑖 ∈ [0,1]. 

Theorem 5. Using Definition 5 and Eq (34), we obtain 

𝐶𝐼 − 𝑉𝐼𝑈𝐿𝑊𝐺𝐻𝑀𝓇𝑆𝐶,𝓈𝑆𝐶(𝛤𝐶𝐼𝑈−1, 𝛤𝐶𝐼𝑈−2, … , 𝛤𝐶𝐼𝑈−𝛴⏞) = 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝜂

(

 
 
1−(∏ ∏ (1−(1−(1−(

𝜇𝑖
ℎ
)
𝛴⏞Ω̂𝑊−𝑖

)

𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1−(1−(
𝜇𝑠
ℎ
)
𝛴⏞Ω̂𝑊−𝑠

)

𝛴⏞Ω̂𝑊−𝔰

)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

,

𝜂

(

  
 
1−

(

 ∏ ∏

(

 1−(1−(1−(
𝜁𝑖
ℎ
)
𝛴⏞Ω̂𝑊−𝑖

)

𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1−(1−(
𝜁𝑠
ℎ
)
𝛴⏞Ω̂𝑊−𝑠

)

𝛴⏞Ω̂𝑊−𝔰

)

𝓈𝑆𝐶

)

 𝛴⏞
𝔰=1

𝛴⏞
𝑖=1

)

 

2

𝛴⏞(𝛴⏞+1)

)

  
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

(

 
 
1 − (∏∏(1− (1 − (1 −𝓂−

𝛤𝑅𝑃−𝑖

𝛴⏞Ω̂𝑊−𝑖)
𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1 − (1 −𝓂−
𝛤𝑅𝑃−𝔰

𝛴⏞Ω̂𝑊−𝔰)
𝛴⏞Ω̂𝑊−𝔰

)

𝓈𝑆𝐶

)

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

)

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

,

(

 
 
1 − (∏∏(1− (1 − (1 −𝓂+

𝛤𝑅𝑃−𝑖

𝛴⏞Ω̂𝑊−𝑖)
𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1 − (1 −𝓂+
𝛤𝑅𝑃−𝔰

𝛴⏞Ω̂𝑊−𝔰)
𝛴⏞Ω̂𝑊−𝔰

)

𝓈𝑆𝐶

)

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

)

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 
 
 

(

 
 
1−(∏ ∏ (1−(1−(1−𝓂−𝛤𝐼𝑃−𝑖

𝛴⏞Ω̂𝑊−𝑖)

𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1−(1−𝓂−𝛤𝐼𝑃−𝔰
𝛴⏞Ω̂𝑊−𝔰)

𝛴⏞Ω̂𝑊−𝔰
)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

,

(

 
 
1−(∏ ∏ (1−(1−(1−𝓂+𝛤𝐼𝑃−𝑖

𝛴⏞Ω̂𝑊−𝑖)

𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1−(1−𝓂+𝛤𝐼𝑃−𝔰
𝛴⏞Ω̂𝑊−𝔰)

𝛴⏞Ω̂𝑊−𝔰

)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

]
 
 
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
1 −

(

 
 
(∏∏(1− (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

− )
𝛴⏞Ω̂𝑊−𝑖

)
𝓇𝑆𝐶

(1 − (1 − 𝓃𝛤𝑅𝑃−𝔰
− )

𝛴⏞Ω̂𝑊−𝔰
)
𝓈𝑆𝐶

)

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

)

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 
 
,

(

 
 
 
1 −

(

 
 
(∏∏(1− (1 − (1 − 𝓃𝛤𝑅𝑃−𝑖

+ )
𝛴⏞Ω̂𝑊−𝑖

)
𝓇𝑆𝐶

(1 − (1 − 𝓃𝛤𝑅𝑃−𝔰
+ )

𝛴⏞Ω̂𝑊−𝔰
)
𝓈𝑆𝐶

)

𝛴⏞

𝔰=1

𝛴⏞

𝑖=1

)

2

𝛴⏞(𝛴⏞+1)

)

 
 

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

𝑒

𝑖2𝜋

[
 
 
 
 
 
 
 
 
 
 

(

  
 
1−((∏ ∏ (1−(1−(1−𝓃𝛤𝐼𝑃−𝑖

− )
𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1−(1−𝓃𝛤𝐼𝑃−𝔰
− )

𝛴⏞Ω̂𝑊−𝔰
)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

  
 
,

(

  
 
1−((∏ ∏ (1−(1−(1−𝓃𝛤𝐼𝑃−𝑖

+ )
𝛴⏞Ω̂𝑊−𝑖

)

𝓇𝑆𝐶

(1−(1−𝓃𝛤𝐼𝑃−𝔰
+ )

𝛴⏞Ω̂𝑊−𝔰
)

𝓈𝑆𝐶

)𝛴⏞
𝔰=1

𝛴⏞
𝑖=1 )

2

𝛴⏞(𝛴⏞+1)
)

1
𝓇𝑆𝐶+𝓈𝑆𝐶

)

  
 

]
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Proof. Omitted. 

5. Decision-making procedure for CI-VIUL settings 

Decision-making approaches are the techniques we use with data to get a decision in situations 

like deciding to cross a canal, choosing a later semester’s classes or establishing an extended-term 
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business scheme. Furthermore, human decision-making is frequently learned as a consequence of the 

sensitive performance of alternative terms on the possible options and the values of the consequences 

connected to these decisions. This analysis describes the MADM technique using initiated approaches. 

5.1. Decision-making process 

This study states how we employ the MADM procedure in the field of the CI-VIULWAHM 

operator or CI-VIULWGHM operator. Therefore, to check the practicality and usefulness of the 

initiated approaches, a MADM technique is implemented for CI-VIUL settings. The reliability of the 

proposed MADM tool is demonstrated via a computational example that assesses the impact of the 

diagnosed approaches on various well-known prevailing theories. For this, various mathematical forms 

of alternatives are given in the form of 𝛷̅𝐴𝑙 = {𝛷̅𝐴𝑙−1, 𝛷̅𝐴𝑙−2, … , 𝛷̅𝐴𝑙−𝛴⏞}, similarly, the mathematical 

shapes of attributes are given in the shape of ℒ̅𝐴𝑡 = {ℒ̅𝐴𝑡−1, ℒ̅𝐴𝑡−2, … , ℒ̅𝐴𝑡−𝑚⏞ } with weight vectors 

Ω̂𝑊 = {Ω̂𝑊−1, Ω̂𝑊−2, … , Ω̂𝑊−𝑛⏞}, expressing the value of experts with ∑ Ω̂𝑊−𝑖
𝑛⏞
𝑖=1 = 1. Furthermore, 

expressions for different experts are given by 𝒟̅𝐷𝑚 = {𝒟̅𝐷𝑚−1, 𝒟̅𝐷𝑚−2, … , 𝒟̅𝐷𝑚−𝛴⏞}, and their weight 

vectors are Ω′̂𝑊 = {Ω
′̂
𝑊−1, Ω

′̂
𝑊−2, … , Ω

′̂
𝑊−𝑛⏞} , showing the opinions of the experts with 

∑ Ω′̂𝑊−𝑖
𝑛⏞
𝑖=1 = 1. Under the availability of the above data, we diagnose various matrices that are of the 

shape ℛ̆𝑖 , 𝑖 = 1,2,… , 𝑛⏞ , where the terms included in the matrix are expressed by 𝛤𝐶𝐼𝑈 =

([𝜂𝜇𝑖 , 𝜂𝜁𝔰], (𝓂𝛤𝐶𝐼𝑈(𝔨̆), 𝓃𝛤𝐶𝐼𝑈(𝔨̆))) , where 𝓂𝛤𝐶𝐼𝑈(𝔨̆) = [𝓂𝛤𝑅𝑃
− (𝔨̆),𝓂𝛤𝑅𝑃

+ (𝔨̆)]𝑒𝑖2𝜋[𝓂𝛤𝐼𝑃
− (𝔨̆),𝓂𝛤𝐼𝑃

+ (𝔨̆)]
 , and 

𝓃𝛤𝐶𝐼𝑈(𝔨̆) = [𝓃𝛤𝑅𝑃
− (𝔨̆), 𝓃𝛤𝑅𝑃

+ (𝔨̆)]𝑒𝑖2𝜋[𝓃𝛤𝐼𝑃
− (𝔨̆),𝓃𝛤𝐼𝑃

+ (𝔨̆)]
 , with well-known and valuable rules: 0 ≤

𝓂𝛤𝑅𝑃
+ (𝔨̆) + 𝓃𝛤𝑅𝑃

+ (𝔨̆) ≤ 1  and 0 ≤ 𝓂𝛤𝐼𝑃
+ (𝔨̆) + 𝓃𝛤𝐼𝑃

+ (𝔨̆) ≤ 1  where 𝜂𝜇𝑖 , 𝜂𝜁𝔰 ∈ 𝜂̂(𝑖 ≤ 𝔰) . To evaluate 

the above problem, the decision-making process is diagnosed here. 

5.2. Proposed algorithm 

Now, the steps of a new technique to describe the problem are shown below. 

Step 1. Formulate the matrix by putting the items in the shape of CI-VIULNs. 

Step 2. Formulate the CI-VIULN by aggregating the given data with the help of the CI-VIULWAHM 

operator or CI-VIULWGHM operator. 

Step 3. Again, formulate the CI-VIULN by aggregating the given data with the help of the CI-

VIULWAHM operator or CI-VIULWGHM operator. 

Step 4. Formulate the SV with the availability of aggregated CI-VIULNs. 

Step 5. Formulate the ranking values in which the availability of SVs demonstrates the best options. 

6. Illustrating example 

Data given in [41] are very valuable and informative for determining the beneficial option for 

taking the best decision from the family of decisions. In [41], it is stated that there are some well-

known organizations that try to pick the most beneficial and ideal option among all options. For this, 

experts give four potential terms, expressed as the family of alternatives, as stated below: 

1) 𝛷̅𝐴𝑙−1: vehicle company, 
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2) 𝛷̅𝐴𝑙−2: food company, 

3) 𝛷̅𝐴𝑙−3: computer company, 

4) 𝛷̅𝐴𝑙−4: mobiles company. 

For this, experts also give data that expressed the four attributes: 

1) ℒ̅𝐴𝑡−1: hazard factor, 

2) ℒ̅𝐴𝑡−2: improvement factor, 

3) ℒ̅𝐴𝑡−3: social factor, 

4) ℒ̅𝐴𝑡−4: other factors. 

For the above four criteria, experts give their opinions in the form of their weight vectors Ω̂𝑊
′ = (0.4,0.4,0.2)𝑇 for the decision matrix and 

Ω̂𝑊 = (0.4, 0.3, 0.2, 0.1)
𝑇 for CI-VIULNs. Now, the steps of a new technique to describe the dilemma are shown below: 

Step 1. Formulate the matrices by putting the items in the shape of CI-VIULNs (see Tables 1–3). 

Table 1. Matrix ℛ̆1, including CI-VIULNs. 

Alternative/Attribute 𝓛̅𝑨𝒕−𝟏 𝓛̅𝑨𝒕−𝟐 𝓛̅𝑨𝒕−𝟑 𝓛̅𝑨𝒕−𝟒 

𝜱̅𝑨𝒍−𝟏 
(

[𝜂1, 𝜂2],

(
[0.3,0.4]𝑒𝑖2𝜋[0.1,0.2],

[0.2,0.3]𝑒𝑖2𝜋[0.3,0.4]
)
) (

[𝜂1, 𝜂2],

(
[0.31,0.41]𝑒𝑖2𝜋[0.11,0.21],

[0.21,0.31]𝑒𝑖2𝜋[0.31,0.41]
)
) (

[𝜂1, 𝜂2],

(
[0.32,0.42]𝑒𝑖2𝜋[0.12,0.22],

[0.22,0.32]𝑒𝑖2𝜋[0.32,0.42]
)
) (

[𝜂1, 𝜂2],

(
[0.33,0.43]𝑒𝑖2𝜋[0.13,0.23],

[0.23,0.33]𝑒𝑖2𝜋[0.33,0.43]
)
) 

𝜱̅𝑨𝒍−𝟐 
(

[𝜂1, 𝜂3],

(
[0.1,0.3]𝑒𝑖2𝜋[0.2,0.4],

[0.2,0.3]𝑒𝑖2𝜋[0.2,0.3]
)
) (

[𝜂1, 𝜂3],

(
[0.11,0.31]𝑒𝑖2𝜋[0.21,0.41],

[0.21,0.31]𝑒𝑖2𝜋[0.21,0.31]
)
) (

[𝜂1, 𝜂3],

(
[0.12,0.32]𝑒𝑖2𝜋[0.22,0.42],

[0.22,0.32]𝑒𝑖2𝜋[0.22,0.32]
)
) (

[𝜂1, 𝜂3],

(
[0.13,0.33]𝑒𝑖2𝜋[0.23,0.43],

[0.23,0.33]𝑒𝑖2𝜋[0.23,0.33]
)
) 

𝜱̅𝑨𝒍−𝟑 
(

[𝜂2, 𝜂3],

(
[0.5,0.6]𝑒𝑖2𝜋[0.3,0.5],

[0.1,0.2]𝑒𝑖2𝜋[0.2,0.3]
)
) (

[𝜂2, 𝜂3],

(
[0.51,0.61]𝑒𝑖2𝜋[0.31,0.51],

[0.11,0.21]𝑒𝑖2𝜋[0.21,0.31]
)
) (

[𝜂2, 𝜂3],

(
[0.52,0.62]𝑒𝑖2𝜋[0.32,0.52],

[0.12,0.22]𝑒𝑖2𝜋[0.22,0.32]
)
) (

[𝜂2, 𝜂3],

(
[0.53,0.63]𝑒𝑖2𝜋[0.33,0.53],

[0.13,0.23]𝑒𝑖2𝜋[0.23,0.33]
)
) 

𝜱̅𝑨𝒍−𝟒 
(

[𝜂1, 𝜂3],

(
[0.2,0.6]𝑒𝑖2𝜋[0.2,0.4],

[0.2,0.3]𝑒𝑖2𝜋[0.1,0.4]
)
) (

[𝜂1, 𝜂3],

(
[0.21,0.61]𝑒𝑖2𝜋[0.21,0.41],

[0.21,0.31]𝑒𝑖2𝜋[0.11,0.41]
)
) (

[𝜂1, 𝜂3],

(
[0.22,0.62]𝑒𝑖2𝜋[0.22,0.42],

[0.22,0.32]𝑒𝑖2𝜋[0.12,0.42]
)
) (

[𝜂1, 𝜂3],

(
[0.23,0.63]𝑒𝑖2𝜋[0.23,0.43],

[0.23,0.33]𝑒𝑖2𝜋[0.13,0.43]
)
) 
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Table 2. Matrix ℛ̆2, including CI-VIULNs. 

Alternative/Attribute 𝓛̅𝑨𝒕−𝟏 𝓛̅𝑨𝒕−𝟐 𝓛̅𝑨𝒕−𝟑 𝓛̅𝑨𝒕−𝟒 

𝜱̅𝑨𝒍−𝟏 

(

[𝜂1, 𝜂3],

(
[0.4,0.5]𝑒𝑖2𝜋[0.2,0.3],

[0.1,0.2]𝑒𝑖2𝜋[0.1,0.2]
)
) (

[𝜂1, 𝜂3],

(
[0.41,0.51]𝑒𝑖2𝜋[0.21,0.31],

[0.11,0.21]𝑒𝑖2𝜋[0.11,0.21]
)
) (

[𝜂1, 𝜂3],

(
[0.42,0.52]𝑒𝑖2𝜋[0.22,0.32],

[0.12,0.22]𝑒𝑖2𝜋[0.12,0.22]
)
) (

[𝜂1, 𝜂3],

(
[0.43,0.53]𝑒𝑖2𝜋[0.23,0.33],

[0.13,0.23]𝑒𝑖2𝜋[0.13,0.23]
)
) 

𝜱̅𝑨𝒍−𝟐 

(

[𝜂1, 𝜂2],

(
[0.2,0.3]𝑒𝑖2𝜋[0.3,0.5],

[0.1,0.3]𝑒𝑖2𝜋[0.1,0.2]
)
) (

[𝜂1, 𝜂2],

(
[0.21,0.31]𝑒𝑖2𝜋[0.31,0.51],

[0.11,0.31]𝑒𝑖2𝜋[0.11,0.21]
)
) (

[𝜂1, 𝜂2],

(
[0.22,0.32]𝑒𝑖2𝜋[0.32,0.52],

[0.12,0.32]𝑒𝑖2𝜋[0.12,0.22]
)
) (

[𝜂1, 𝜂2],

(
[0.23,0.33]𝑒𝑖2𝜋[0.33,0.53],

[0.13,0.33]𝑒𝑖2𝜋[0.13,0.23]
)
) 

𝜱̅𝑨𝒍−𝟑 

(

[𝜂3, 𝜂4],

(
[0.2,0.3]𝑒𝑖2𝜋[0.2,0.3],

[0.1,0.2]𝑒𝑖2𝜋[0.1,0.2]
)
) (

[𝜂3, 𝜂4],

(
[0.21,0.31]𝑒𝑖2𝜋[0.21,0.31],

[0.11,0.21]𝑒𝑖2𝜋[0.11,0.21]
)
) (

[𝜂3, 𝜂4],

(
[0.22,0.32]𝑒𝑖2𝜋[0.22,0.32],

[0.12,0.22]𝑒𝑖2𝜋[0.12,0.22]
)
) (

[𝜂3, 𝜂4],

(
[0.23,0.33]𝑒𝑖2𝜋[0.23,0.33],

[0.13,0.23]𝑒𝑖2𝜋[0.13,0.23]
)
) 

𝜱̅𝑨𝒍−𝟒 

(

[𝜂1, 𝜂3],

(
[0.2,0.3]𝑒𝑖2𝜋[0.1,0.2],

[0.2,0.3]𝑒𝑖2𝜋[0.1,0.3]
)
) (

[𝜂1, 𝜂3],

(
[0.21,0.31]𝑒𝑖2𝜋[0.11,0.21],

[0.21,0.31]𝑒𝑖2𝜋[0.11,0.31]
)
) (

[𝜂1, 𝜂3],

(
[0.22,0.32]𝑒𝑖2𝜋[0.12,0.22],

[0.22,0.32]𝑒𝑖2𝜋[0.12,0.32]
)
) (

[𝜂1, 𝜂3],

(
[0.23,0.33]𝑒𝑖2𝜋[0.13,0.23],

[0.23,0.33]𝑒𝑖2𝜋[0.13,0.33]
)
) 

Table 3. Matrix ℛ̆3, including CI-VIULNs. 

Alternative/Attribute 𝓛̅𝑨𝒕−𝟏 𝓛̅𝑨𝒕−𝟐 𝓛̅𝑨𝒕−𝟑 𝓛̅𝑨𝒕−𝟒 

𝜱̅𝑨𝒍−𝟏 

(

[𝜂2, 𝜂3],

(
[0.2,0.6]𝑒𝑖2𝜋[0.3,0.4],

[0.1,0.2]𝑒𝑖2𝜋[0.3,0.4]
)
) (

[𝜂2, 𝜂3],

(
[0.21,0.61]𝑒𝑖2𝜋[0.31,0.41],

[0.11,0.21]𝑒𝑖2𝜋[0.31,0.41]
)
) (

[𝜂2, 𝜂3],

(
[0.22,0.62]𝑒𝑖2𝜋[0.32,0.42],

[0.12,0.22]𝑒𝑖2𝜋[0.32,0.42]
)
) (

[𝜂2, 𝜂3],

(
[0.23,0.63]𝑒𝑖2𝜋[0.33,0.43],

[0.13,0.23]𝑒𝑖2𝜋[0.33,0.43]
)
) 

𝜱̅𝑨𝒍−𝟐 

(

[𝜂2, 𝜂4],

(
[0.2,0.3]𝑒𝑖2𝜋[0.3,0.4],

[0.1,0.2]𝑒𝑖2𝜋[0.2,0.3]
)
) (

[𝜂2, 𝜂4],

(
[0.21,0.31]𝑒𝑖2𝜋[0.31,0.41],

[0.11,0.21]𝑒𝑖2𝜋[0.21,0.31]
)
) (

[𝜂2, 𝜂4],

(
[0.22,0.32]𝑒𝑖2𝜋[0.32,0.42],

[0.12,0.22]𝑒𝑖2𝜋[0.22,0.32]
)
) (

[𝜂2, 𝜂4],

(
[0.23,0.33]𝑒𝑖2𝜋[0.33,0.43],

[0.13,0.23]𝑒𝑖2𝜋[0.23,0.33]
)
) 

𝜱̅𝑨𝒍−𝟑 

(

[𝜂3, 𝜂4],

(
[0.1,0.5]𝑒𝑖2𝜋[0.2,0.4],

[0.2,0.3]𝑒𝑖2𝜋[0.1,0.2]
)
) (

[𝜂3, 𝜂4],

(
[0.11,0.51]𝑒𝑖2𝜋[0.21,0.41],

[0.21,0.31]𝑒𝑖2𝜋[0.11,0.21]
)
) (

[𝜂3, 𝜂4],

(
[0.12,0.52]𝑒𝑖2𝜋[0.22,0.42],

[0.22,0.32]𝑒𝑖2𝜋[0.12,0.22]
)
) (

[𝜂3, 𝜂4],

(
[0.13,0.53]𝑒𝑖2𝜋[0.23,0.43],

[0.23,0.33]𝑒𝑖2𝜋[0.13,0.23]
)
) 

Continued on next page 
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Alternative/Attribute 𝓛̅𝑨𝒕−𝟏 𝓛̅𝑨𝒕−𝟐 𝓛̅𝑨𝒕−𝟑 𝓛̅𝑨𝒕−𝟒 

𝜱̅𝑨𝒍−𝟒 

(

[𝜂2, 𝜂4],

(
[0.1,0.3]𝑒𝑖2𝜋[0.2,0.3],

[0.2,0.4]𝑒𝑖2𝜋[0.3,0.4]
)
) (

[𝜂2, 𝜂4],

(
[0.11,0.31]𝑒𝑖2𝜋[0.21,0.31],

[0.21,0.41]𝑒𝑖2𝜋[0.31,0.41]
)
) (

[𝜂2, 𝜂4],

(
[0.12,0.32]𝑒𝑖2𝜋[0.22,0.32],

[0.22,0.42]𝑒𝑖2𝜋[0.32,0.42]
)
) (

[𝜂2, 𝜂4],

(
[0.13,0.33]𝑒𝑖2𝜋[0.23,0.33],

[0.23,0.43]𝑒𝑖2𝜋[0.33,0.43]
)
) 

Step 2. Formulate the CI-VIULN by aggregating the given data with the help of the CI-VIULWAHM operator or CI-VIULWGHM operator, and 

using the values of parameters 𝓇𝑆𝐶 , 𝓈𝑆𝐶 = 1; then, see the data in Table 4. 

Table 4. Aggregated values using CI-VIULWAHM operator. 

 𝓛̅𝑨𝒕−𝟏 𝓛̅𝑨𝒕−𝟐 𝓛̅𝑨𝒕−𝟑 𝓛̅𝑨𝒕−𝟒 

𝜱̅𝑨𝒍−𝟏 

(

[𝜂0.33448, 𝜂0.65666],

(
[0.3998,0.6171]𝑒𝑖2𝜋[0.2521,0.3796],

[0.0004,0.0049]𝑒𝑖2𝜋[0.0039,0.019]
)
) (

[𝜂0.33448, 𝜂0.65666],

(
[0.4121,0.6281]𝑒𝑖2𝜋[0.2650,0.3921],

[0.00057,0.0058]𝑒𝑖2𝜋[0.0047,0.0215]
)
) (

[𝜂0.33448, 𝜂0.65666],

(
[0.4243,0.6392]𝑒𝑖2𝜋[0.278,0.4045],

[0.00077,0.0069]𝑒𝑖2𝜋[0.0057,0.027]
)
) (

[𝜂0.33448, 𝜂0.65666],

(
[0.4364,0.6501]𝑒𝑖2𝜋[0.2908,0.4169],

[0.0010,0.008]𝑒𝑖2𝜋[0.0068,0.027]
)
) 

𝜱̅𝑨𝒍−𝟐 

(

[𝜂0.3344, 𝜂0.7272],

(
[0.2162,0.3888]𝑒𝑖2𝜋[0.3441,0.5512],

[0.00041,0.0088]𝑒𝑖2𝜋[0.0010,0.0081]
)
) (

[𝜂0.3344, 𝜂0.7272],

(
[0.2292,0.4011]𝑒𝑖2𝜋[0.3567,0.5626],

[0.00057,0.0103]𝑒𝑖2𝜋[0.0013,0.0095]
)
) (

[𝜂0.3344, 𝜂0.7272],

(
[0.2421,0.4134]𝑒𝑖2𝜋[0.3691,0.5740],

[0.00078,0.01192]𝑒𝑖2𝜋[0.00173,0.01104]
)
) (

[𝜂0.3344, 𝜂0.7272],

(
[0.2550,0.4256]𝑒𝑖2𝜋[0.3816,0.5852],

[0.0010,0.0137]𝑒𝑖2𝜋[0.00219,0.01271]
)
) 

𝜱̅𝑨𝒍−𝟑 

(

[𝜂0.6566, 𝜂0.8526],

(
[0.3693,0.587]𝑒𝑖2𝜋[0.3092,0.5104],

[0.00035,0.0044]𝑒𝑖2𝜋[0.00041,0.0049]
)
) (

[𝜂0.6566, 𝜂0.8526],

(
[0.3819,0.5983]𝑒𝑖2𝜋[0.3218,0.5222],

[0.00049,0.0053]𝑒𝑖2𝜋[0.00057,0.0058]
)
) (

[𝜂0.6566, 𝜂0.8526],

(
[0.3943,0.6096]𝑒𝑖2𝜋[0.3344,0.5338],

[0.00068,0.0063]𝑒𝑖2𝜋[0.00078,0.0069]
)
) (

[𝜂0.6566, 𝜂0.8526],

(
[0.4067,0.6208]𝑒𝑖2𝜋[0.3469,0.5454],

[0.0009,0.0075]𝑒𝑖2𝜋[0.0010,0.0082]
)
) 

𝜱̅𝑨𝒍−𝟒 

(

[𝜂0.3344, 𝜂0.7897],

(
[0.2278,0.5228]𝑒𝑖2𝜋[0.2162,0.3895],

[0.0025,0.0198]𝑒𝑖2𝜋[0.0007,0.02967]
)
) (

[𝜂0.3344, 𝜂0.7897],

(
[0.2407,0.5346]𝑒𝑖2𝜋[0.2292,0.4019],

[0.0031,0.02237]𝑒𝑖2𝜋[0.00095,0.0329]
)
) (

[𝜂0.3344, 𝜂0.7897],

(
[0.2535,0.5463]𝑒𝑖2𝜋[0.2421,0.4142],

[0.0038,0.0250]𝑒𝑖2𝜋[0.0012,0.03641]
)
) (

[𝜂0.3344, 𝜂0.7897],

(
[0.2663,0.5579]𝑒𝑖2𝜋[0.2550,0.4264],

[0.0046,0.0279]𝑒𝑖2𝜋[0.00163,0.04012]
)
) 

Step 3. Again, formulate the CI-VIULN by aggregating the given data with the help of the CI-VIULWAHM operator or CI-VIULWGHM operator 

and using 𝓇𝑆𝐶 , 𝓈𝑆𝐶 = 1; then, see the data in Table 5.
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Table 5. Aggregated values using CI-VIULWAHM and CI-VIULWAHM operators. 

 CI-VIULWAHM CI-VIULWGHM 

𝜱̅𝑨𝒍−𝟏 

(

[𝜂0.08145, 𝜂0.1587],

(
[0.4818,0.7069]𝑒𝑖2𝜋[0.3163,0.4598],

[0.00000091,0.00134]𝑒𝑖2𝜋[0.00104,0.00663]
)
) (

[𝜂0.08145, 𝜂0.1587],

(
[0.2960,0.5174]𝑒𝑖2𝜋[0.1657,0.2772],

[0.00072,0.0072]𝑒𝑖2𝜋[0.0059,0.0263]
)
) 

𝜱̅𝑨𝒍−𝟐 

(

[𝜂0.0814, 𝜂0.1755],

(
[0.2747,0.4698]𝑒𝑖2𝜋[0.4204,0.6413],

[0.0000009,0.00266]𝑒𝑖2𝜋[0.00022,0.00241]
)
) (

[𝜂0.0814, 𝜂0.1755],

(
[0.1371,0.2857]𝑒𝑖2𝜋[0.2447,0.4471],

[0.00072,0.0126]𝑒𝑖2𝜋[0.00169,0.01172]
)
) 

𝜱̅𝑨𝒍−𝟑 

(

[𝜂0.1587, 𝜂0.2052],

(
[0.4485,0.6774]𝑒𝑖2𝜋[0.3812,0.5996],

[0.0.00006,0.00119]𝑒𝑖2𝜋[0.0.00009,0.00134]
)
) (

[𝜂0.1587, 𝜂0.2052],

(
[0.2677,0.4851]𝑒𝑖2𝜋[0.2137,0.4049],

[0.00062,0.0066]𝑒𝑖2𝜋[0.00072,0.00727]
)
) 

𝜱̅𝑨𝒍−𝟒 

(

[𝜂0.08145, 𝜂0.19034],

(
[0.2881,0.6125]𝑒𝑖2𝜋[0.2747,0.4706],

[0.00062,0.0069]𝑒𝑖2𝜋[0.00015,0.01134]
)
) (

[𝜂0.08145, 𝜂0.19034],

(
[0.1462,0.4178]𝑒𝑖2𝜋[0.1371,0.2864],

[0.0039,0.02742]𝑒𝑖2𝜋[0.00119,0.04031]
)
) 

Step 4. Formulate the SV with the availability of aggregated CI-VIULNs, as given in Table 6. 

Table 6. Expressed SVs using data in Table 5. 

 CI-VIULWAHM CI-VIULWGHM 

𝕰̅𝑨𝒍−𝟏 0.73986 0.46009 

𝕰̅𝑨𝒍−𝟐 0.65919 0.39818 

𝕰̅𝑨𝒍−𝟑 0.93306 0.60145 

𝕰̅𝑨𝒍−𝟒 0.58084 0.32658 

Step 5. Formulate the ranking values for the availability of SVs to demonstrate the best options, as 

given in Table 7. 

Table 7. Expressed ranking values. 

Methods Ranking values 

CI-VIULWAHM operator 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

CI-VIULWGHM operator 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

Table 7 provides the same ranking results with the same beneficial optimal 𝛷𝐴𝑙−3, as obtained 

using the CI-VIULWAHM operator and CI-VIULWGHM operator. Figure 1 states the practical form 

of the data in Table 6. 
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Figure 1. Shown graphical structure of data in Table 6. 

6.1. Influence of parameters 

Here the main theme is to find the stability of the parameters by using their different values and 

discussing their ranking values. Here, we suggest two main parameters, called 𝑟𝑆𝐶 and 𝑠𝑆𝐶. Using the 

data in Tables 1–3, we find the influences of parameters on different values. The major analysis of this 

theory is demonstrated in Table 8 with the help of two well-known theories called CI-VIULWAHM 

and CI-VIULWGHM operators. First, we try to fix the value of the parameter 𝑠𝑆𝐶 = 1 ; then, see 

Table 8. 

Table 8. Expressed influences of parameter 𝓇𝑆𝐶 for 𝓈𝑆𝐶 = 1. 

𝓻𝑺𝑪 Operator Score Values Ranking Values 

1 WAHM 0.7398, 0.6591, 0.9330, 0.5808 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM 0.4600, 0.3982, 0.6014, 0.3265 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

2 WAHM 0.618, 0.5574, 0.8554, 0.4652 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM 0.2764, 0.2474, 0.4679, 0.1410 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

5 WAHM 0.2582, 0.2251, 0.5497, 0.1721 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM −0.4424, −0.4409, −0.3171, −0.5144 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

7 WAHM 0.2313, 0.1940, 0.5124, 0.1766 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM −0.7208, −0.7302, −0.7182, −0.7668 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

10 WAHM 0.2893, 0.2491, 0.5928, 0.2430 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM −0.9715, −0.9657, −1.0896, −0.9764 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

Tables 8 and 9 state that for any number of parameters, we can get the same ranking result, then 

the beneficial optimal value is 𝛷̅𝐴𝑙−3. Moreover, with the availability of the presented approaches, we 

further improved the quality of the invented approaches with the help of the comparative analysis 

diagnosed here. 
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Table 9. Expressed influences of parameter 𝓈𝑆𝐶 for 𝓇𝑆𝐶 = 1. 

𝓼𝑺𝑪 Operator Score Values Ranking Values 

1 WAHM 0.7398, 0.6591, 0.9330, 0.5808 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM 0.4600, 0.3982, 0.6014, 0.3265 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

2 WAHM 0.6681, 0.5905, 0.8739, 0.4815 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM 0.3727, 0.3242, 0.5543, 0.1985 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

5 WAHM 0.2579, 0.1919, 0.4958, 0.03177 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM −0.2382, −0.2634, −0.05009, −0.4125 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

7 WAHM 0.03748, −0.03779, 0.2520, −0.1812 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM −0.5289, −0.56151, −0.3913, −0.6661 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

10 WAHM −0.1822, −0.2731, −0.0081, −0.3821 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

WGHM −0.7752, −0.8183, −0.6939, −0.8692 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

6.2. Comparative analysis 

Comparative analysis refers to the sensitivity of two or more techniques, data sets or tools. Pattern 

analysis, filtering and strategic decision-making techniques are different forms of sensitivity analysis. 

In healthcare, sensitive analysis is performed to compare the large number of medical records, images 

and other data used to find the supremacy of the decision-making tool. In this strategy, we suggested 

various existing operators in these forms: the HM operator initiated in [41], partitioned BM (PBM) 

operator initiated in [42], weighted Bonferroni ordered weighted averaging (WBOWA) operator 

exposed in [43], Hamy mean (HaM) operators diagnosed in [44] and BM operators proposed in [45]. 

The information given in [41–45] was diagnosed based on intuitionistic uncertain linguistic sets. The 

prevailing operators based on intuitionistic uncertain linguistic information were diagnosed in [41–45] 

and have a lot of limitations because they can deal only with one dimension of information at a time; 

however, the supremacy of the proposed work is that they can easily deal with two dimensions of 

information at a time. Table 10 includes a comparative analysis of the initiated and existing operators 

using the data in Tables 1–3. 

Table 10. Results of comparative analysis. 

Methods Operator Score Values Ranking Values 

Liu et al. [41] HM Limited rules, not able to find the 

solution of the above example 

Failed to resolve the above theory 

Liu and Liu [42] PBM Limited rules, not able to find the 

solution of the above example 

Failed to resolve the above theory 

Liu et al. [43] WBOWA Limited rules, not able to find the 

solution of the above example 

Failed to resolve the above theory 

Liu et al. [44] HaM Limited rules, not able to find the 

solution of the above example 

Failed to resolve the above theory 

Liu and Zhang [45] BM Limited rules, not able to find the 

solution of the above example 

Failed to resolve the above theory 

Proposed operators CI-VIULWAHM 0.7398,0.6591,0.9330,0.5808 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 

CI-VIULWGHM 0.4600,0.3982,0.6014,0.3265 𝛷̅𝐴𝑙−3 ≥ 𝛷̅𝐴𝑙−1 ≥ 𝛷̅𝐴𝑙−2 ≥ 𝛷̅𝐴𝑙−4 
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The data given in [41–45] have various limitations and, due to these reasons, they cannot give the 

exact solution of the considered data. The demonstrated approaches have a lot of advantages, and they 

can easily find the solutions to the awkward and complicated sorts of data. Using the information in 

Table 10, we get the best optimal value in the form 𝛷𝐴𝑙−3. Furthermore, we try to explain the above 

result in the form of a graphical structure, like Figure 2. Figure 2 includes four alternatives initiated by 

six different scholars [41–45]. Therefore, the diagnosed approaches are more dominant as compared 

to the approaches in [41–45]. 

 

Figure 2. Geometrical shapes of data in Table 10. 

7. Conclusions 

The theory of CI-VIUL information is more massive and generalized than the existing theories, 

such as intuitionistic, I-V intuitionistic, intuitionistic fuzzy linguistic, I-V intuitionistic fuzzy linguistic 

and linguistic sets. The main and most valuable results of this analysis are described below. 

1) We diagnosed the well-known theory, called the CI-VIUL setting, as a more powerful and capable 

tool to handle ambiguous sorts of theories. Furthermore, to enhance the features of the CI-VIUL 

information, we diagnosed the algebraic laws, SV and AV for CI-VIUL settings. 

2) We developed the CI-VIULAHM operator, CI-VIULWAHM operator, CI-VIULGHM operator, 

CI-VIULWGHM operator and their well-known achievements in the form of some results, important 

properties and specific cases. 

3) We checked the practicality and usefulness of the initiated approaches, and a MADM technique 

was implemented for CI-VIUL settings. 

4) The reliability of the proposed MADM tool was demonstrated by a computational example that 

assesses the impact of the diagnosed approaches on various well-known prevailing theories. 

Decision social networks mostly depend on the individual decisions in the examples. In the 

upcoming times, we can continue to enhance superior aggregation operators, different types of 

techniques, new similarity measures, etc., further diagnosing a massively valuable and genuine weight 

determination technique that can be employed to evaluate awkward and problematic issues in various 

real-life problems. In addition, we will modify the proposed work for complex spherical FSs [49], T-

spherical FSs [50], Pythagorean FSs [51], decision-making [52–55], linear Diophantine FSs [56] and 
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fuzzy N-soft sets [57] to enhance the study of the existing approaches. 
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