Research article

Blow-up of solutions to the coupled Tricomi equations with derivative type nonlinearities

  • Received: 14 February 2022 Revised: 12 April 2022 Accepted: 15 April 2022 Published: 27 April 2022
  • MSC : 35L70, 58J45

  • This paper is concerned with blow-up results of solutions to coupled system of the Tricomi equations with derivative type nonlinearities. Upper bound lifespan estimates of solutions to the Cauchy problem with small initial values are derived by using the test function method (see the proof of Theorem 1.1) and iteration argument (see the proof of Theorem 1.2), respectively. Our main new contribution is that lifespan estimates of solutions to the problem in the sub-critical and critical cases which are connected with the Glassey conjecture are established. To the best knowledge of authors, the results in Theorems 1.1 and 1.2 are new.

    Citation: Jiangyan Yao, Sen Ming, Wei Han, Xiuqing Zhang. Blow-up of solutions to the coupled Tricomi equations with derivative type nonlinearities[J]. AIMS Mathematics, 2022, 7(7): 12514-12535. doi: 10.3934/math.2022694

    Related Papers:

  • This paper is concerned with blow-up results of solutions to coupled system of the Tricomi equations with derivative type nonlinearities. Upper bound lifespan estimates of solutions to the Cauchy problem with small initial values are derived by using the test function method (see the proof of Theorem 1.1) and iteration argument (see the proof of Theorem 1.2), respectively. Our main new contribution is that lifespan estimates of solutions to the problem in the sub-critical and critical cases which are connected with the Glassey conjecture are established. To the best knowledge of authors, the results in Theorems 1.1 and 1.2 are new.



    加载中


    [1] W. H. Chen, S. Lucente, A. Palmieri, Non-existence of global solutions for generalized Tricomi equations with combined nonlinearity, Nonlinear Anal.: Real Worl. Appl., 61 (2021), 103354. https://doi.org/10.1016/j.nonrwa.2021.103354 doi: 10.1016/j.nonrwa.2021.103354
    [2] V. Georgiev, H. Lindblad, C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 119 (1997), 1291–1319. https://doi.org/10.1353/ajm.1997.0038 doi: 10.1353/ajm.1997.0038
    [3] R. T. Glassey, Math review to "Global behavior of solutions to nonlinear wave equations in three space dimensions" of sideris, Comm. Part. Differ. Equ., 1983.
    [4] R. T. Glassey, Existence in the large for $\Box u = F(u)$ in two space dimensions, Math. Zeit., 178 (1981), 233–261. https://doi.org/10.1007/BF01262042 doi: 10.1007/BF01262042
    [5] M. Hamouda, M. A. Hamza, Blow-up for wave equation with the scale invariant damping and combined nonlinearities, Math. Meth. Appl. Scie., 44 (2021), 1127–1136. https://doi.org/10.1002/mma.6817 doi: 10.1002/mma.6817
    [6] M. Hamouda, M. A. Hamza, Blow-up and lifespan estimate for the generalized Tricomi equation with mixed nonlinearities, arXiv, 2021. https://doi.org/10.48550/arXiv.2011.04895 doi: 10.48550/arXiv.2011.04895
    [7] W. Han, Concerning the Strauss Conjecture for the subcritical and critical cases on the exterior domain in two space dimensions, Nonlinear Anal., 84 (2013), 136–145. https://doi.org/10.1016/j.na.2013.02.013 doi: 10.1016/j.na.2013.02.013
    [8] W. Han, Y. Zhou, Blow-up for some semilinear wave equations in multi-space dimensions, Commun. Part. Differ. Equ., 39 (2014), 651–665. https://doi.org/10.1080/03605302.2013.863916 doi: 10.1080/03605302.2013.863916
    [9] J. H. Hao, B. P. Rao, Influence of the hidden regularity on the stability of partially damped systems of wave equations, J. Math. Pure Appl., 143 (2020), 257–286. https://doi.org/10.1016/j.matpur.2020.09.004 doi: 10.1016/j.matpur.2020.09.004
    [10] M. F. B. Hassen, M. Hamouda, M. A. Hamza, H. K. Teka, Nonexistence result for the generalized Tricomi equation with the scale-invariant damping, mass term and time derivative nonlinearity, Asymptotic Anal., 2021.
    [11] D. Y. He, I. Witt, H. C. Yin, On the global solution problem for semilinear generalized Tricomi equations, Ⅰ, Calc. Vari., 56 (2017), 21. https://doi.org/10.1007/s00526-017-1125-9 doi: 10.1007/s00526-017-1125-9
    [12] D. Y. He, I. Witt, H. C. Yin, On semilinear Tricomi equations with critical exponents or in two space dimensions, J. Differ. Equ., 263 (2017), 8102–8137. https://doi.org/10.1016/j.jde.2017.08.033 doi: 10.1016/j.jde.2017.08.033
    [13] D. Y. He, I. Witt, H. C. Yin, On the strauss index of semilinear Tricomi equation, Commun. Pure Appl. Anal., 19 (2020), 4817–4838. https://doi.org/10.3934/cpaa.2020213 doi: 10.3934/cpaa.2020213
    [14] M. Ikeda, J. Y. Lin, Z. H. Tu, Small data blow-up for the weakly coupled system of the generalized Tricomi equations with multiple propagation speeds, J. Evol. Equ., 21 (2021), 3765–3796. https://doi.org/10.1007/s00028-021-00703-4 doi: 10.1007/s00028-021-00703-4
    [15] M. Ikeda, M. Sobajima, K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly coupled systems, J. Differ. Equ., 267 (2019), 5165–5201. https://doi.org/10.1016/j.jde.2019.05.029 doi: 10.1016/j.jde.2019.05.029
    [16] F. John, Blow-up of solutions of nonlinear wave equations in three space dimension, Manuscripta Math., 28 (1979), 235–268. https://doi.org/10.1007/BF01647974 doi: 10.1007/BF01647974
    [17] S. Kitamura, K. Morisawa, H. Takamura, The lifespan of classical solutions of semilinear wave equations with spatial weights and compactly supported data in one space dimension, J. Differ. Equ., 307 (2022), 486–516. https://doi.org/10.1016/j.jde.2021.10.062 doi: 10.1016/j.jde.2021.10.062
    [18] N. A. Lai, H. Takamura, Non-existence of global solutions of wave equations with weak time dependent damping and combined nonlinearity, Nonlinear Anal.: Real Worl. Appl., 45 (2019), 83–96. https://doi.org/10.1016/j.nonrwa.2018.06.008 doi: 10.1016/j.nonrwa.2018.06.008
    [19] N. A. Lai, Z. H. Tu, Strauss exponent for semilinear wave equations with scattering space dependent damping, J. Math. Anal. Appl., 489 (2020), 124189. https://doi.org/10.1016/j.jmaa.2020.124189 doi: 10.1016/j.jmaa.2020.124189
    [20] N. A. Lai, M. Y. Liu, K. Wakasa, C. B. Wang, Lifespan estimates for 2 dimensional semilinear wave equations in asymptotically Euclidean exterior domains, J. Funct. Anal., 281 (2021), 109253. https://doi.org/10.1016/j.jfa.2021.109253 doi: 10.1016/j.jfa.2021.109253
    [21] N. A. Lai, Y. Zhou, Blow-up for initial boundary value problem of critical semilinear wave equation in 2-D, Commun. Pure Appl. Anal., 17 (2018), 1499–1510. https://doi.org/10.3934/cpaa.2018072 doi: 10.3934/cpaa.2018072
    [22] N. A. Lai, N. M. Schiavone, Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture, Math. Z., 2020. https://doi.org/10.1007/s00209-022-03017-4 doi: 10.1007/s00209-022-03017-4
    [23] N. A. Lai, Y. Zhou, Global existence for semilinear wave equation with scalling invariant damping in 3-D, Nonlinear Anal., 210 (2021), 112392. https://doi.org/10.1016/j.na.2021.112392 doi: 10.1016/j.na.2021.112392
    [24] Q. Lei, H. Yang, Global existence and blow-up for semilinear wave equations with variable coefficients, Chin. Anna. Math. Seri. B, 39 (2018), 643–664. https://doi.org/10.1007/s11401-018-0087-3 doi: 10.1007/s11401-018-0087-3
    [25] M. Y. Liu, C. B. Wang, Blow up for small amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds, J. Differ. Equ., 269 (2020), 8573–8596. https://doi.org/10.1016/j.jde.2020.06.032 doi: 10.1016/j.jde.2020.06.032
    [26] M. Y. Liu, C. B. Wang, Global existence for semilinear damped wave equations in relation with the Strauss conjecture, Discrete Cont. Dyn. Syst., 40 (2020), 709–724. https://doi.org/10.3934/dcds.2020058 doi: 10.3934/dcds.2020058
    [27] J. Y. Lin, Z. H. Tu, Lifespan of semilinear generalized Tricomi equation with Strauss type exponent, arXiv, 2019. https://doi.org/10.48550/arXiv.1903.11351 doi: 10.48550/arXiv.1903.11351
    [28] H. Lindblad, C. D. Sogge, Long time existence for small amplitude semilinear wave equations, Amer. J. Math., 118 (1996), 1047–1135. https://doi.org/10.1353/ajm.1996.0042 doi: 10.1353/ajm.1996.0042
    [29] S. Lucente, A. Palmieri, A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type, Mila. J. Math., 89 (2021), 45–57. https://doi.org/10.1007/s00032-021-00326-x doi: 10.1007/s00032-021-00326-x
    [30] S. Ming, H. Yang, X. M. Fan, J. Y. Yao, Blow-up and lifespan estimates of solutions to semilinear Moore-Gibson-Thompson equations, Nonlinear Anal.: Real Worl. Appl., 62 (2021), 103360. https://doi.org/10.1016/j.nonrwa.2021.103360 doi: 10.1016/j.nonrwa.2021.103360
    [31] S. Ming, S. Y. Lai, X. M. Fan, Lifespan estimates of solutions to quasilinear wave equations with scattering damping, J. Math. Anal. Appl., 492 (2020), 124441. https://doi.org/10.1016/j.jmaa.2020.124441 doi: 10.1016/j.jmaa.2020.124441
    [32] S. Ming, H. Yang, X. M. Fan, Blow-up and lifespan estimates of solutions to the weakly coupled system of semilinear Moore-Gibson-Thompson equations, Math. Meth. Appl. Sci., 44 (2021), 10972–10992. https://doi.org/10.1002/mma.7462 doi: 10.1002/mma.7462
    [33] I. T. Nazipov, Solution of the spatial Tricomi problem for a singular mixed-type equation by the method of integral equations, Russ. Math., 55 (2011), 61–76. https://doi.org/10.3103/S1066369X1103008X doi: 10.3103/S1066369X1103008X
    [34] F. W. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST handbook of mathematical functions, New York: Cambridge University Press, 2010.
    [35] A. Palmieri, H. Takamura, Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations of derivative type in the scattering case, Nonlinear Differ. Equ. Appl., 17 (2020), 13. https://doi.org/10.1007/s00009-019-1445-4 doi: 10.1007/s00009-019-1445-4
    [36] A. Palmieri, A note on a conjecture for the critical curve of a weakly coupled system of semilinear wave equations with scale invariant lower order terms, Math. Meth. Appl. Sci., 43 (2020), 6702–6731. https://doi.org/10.1002/mma.6412 doi: 10.1002/mma.6412
    [37] A. Palmieri, H. Takamura, Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms, Nonlinear Differ. Equ. Appl., 27 (2020), 58. https://doi.org/10.1007/s00030-020-00662-8 doi: 10.1007/s00030-020-00662-8
    [38] A. Palmieri, H. Takamura, Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities, Nonlinear Anal., 187 (2019), 467–492. https://doi.org/10.1016/j.na.2019.06.016 doi: 10.1016/j.na.2019.06.016
    [39] A. Palmieri, Z. H. Tu, A blow-up result for a semilinear wave equation with scale invariant damping and mass and nonlinearity of derivative type, Calc. Var., 60 (2021), 72. https://doi.org/10.1007/s00526-021-01948-0 doi: 10.1007/s00526-021-01948-0
    [40] Z. P. Ruan, I. Witt, H. C. Yin, On the existence of low regularity solutions to semilinear generalized Tricomi equations in mixed type domains, J. Differ. Equ., 259 (2015), 7406–7462. https://doi.org/10.1016/j.jde.2015.08.025 doi: 10.1016/j.jde.2015.08.025
    [41] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110–133. https://doi.org/10.1016/0022-1236(81)90063-X doi: 10.1016/0022-1236(81)90063-X
    [42] B. Yordanov, Q. S. Zhang, Finite time blow-up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361–374. https://doi.org/10.1016/j.jfa.2005.03.012 doi: 10.1016/j.jfa.2005.03.012
    [43] D. B. Zha, F. S. Wang, On initial boundary value problems for one dimension semilinear wave equations with null conditions, J. Differ. Equ., 275 (2021), 638–651. https://doi.org/10.1016/j.jde.2020.11.022 doi: 10.1016/j.jde.2020.11.022
    [44] Y. Zhou, W. Han, Lifespan of solutions to critical semilinear wave equations, Commun. Part. Differ. Equ., 39 (2014), 439–451. https://doi.org/10.1080/03605302.2013.863914 doi: 10.1080/03605302.2013.863914
    [45] Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Differ. Equ., 8 (1995), 135–144.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2018) PDF downloads(78) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog