In this paper, we consider the solutions of the boundary blow-up problem
$ \begin{eqnarray*} \begin{cases} \Delta u = \frac{1}{u^\gamma} +f(u) \ \ \ \ \mathrm{in}\ \ \ \Omega,\\ \ u>0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{in}\ \ \ \Omega, \\ \ u = +\infty \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{on} \ \ \partial\Omega, \end{cases} \end{eqnarray*} $
where $ \gamma > 0, \ \Omega $ is a bounded convex smooth domain and symmetric w.r.t. a direction. $ f $ is a locally Lipschitz continuous and non-decreasing function. We prove symmetry and monotonicity of solutions of the problem above by the moving planes method. A maximum principle in narrow domains plays an important role in proof of the main result.
Citation: Keqiang Li, Shangjiu Wang, Shaoyong Li. Symmetry of large solutions for semilinear elliptic equations in a symmetric convex domain[J]. AIMS Mathematics, 2022, 7(6): 10860-10866. doi: 10.3934/math.2022607
In this paper, we consider the solutions of the boundary blow-up problem
$ \begin{eqnarray*} \begin{cases} \Delta u = \frac{1}{u^\gamma} +f(u) \ \ \ \ \mathrm{in}\ \ \ \Omega,\\ \ u>0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{in}\ \ \ \Omega, \\ \ u = +\infty \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{on} \ \ \partial\Omega, \end{cases} \end{eqnarray*} $
where $ \gamma > 0, \ \Omega $ is a bounded convex smooth domain and symmetric w.r.t. a direction. $ f $ is a locally Lipschitz continuous and non-decreasing function. We prove symmetry and monotonicity of solutions of the problem above by the moving planes method. A maximum principle in narrow domains plays an important role in proof of the main result.
[1] | A. Canino, M. Grandinetti, B. Sciunzi, Symmetry of solutions of some semilinear elliptic equations with a singular nonlinearities, J. Differ. Equations, 255 (2013), 4437–4447. http://dx.doi.org/10.1016/j.jde.2013.08.014 doi: 10.1016/j.jde.2013.08.014 |
[2] | C. Cortázar, M. Elgueta, J. Garc a-Melián, Symmetry of large solutions for semilinear elliptic equations in a ball, J. Math. Pure. Appl., 121 (2019), 286–297. http://dx.doi.org/10.1007/BF02413056 doi: 10.1007/BF02413056 |
[3] | A. Porreta, L. Véron, Symmetry of large solutions of nonlinear elliptic equations in a ball, J. Funct. Anal., 236 (2006), 581–591. http://dx.doi.org/10.1016/j.jfa.2006.03.010 doi: 10.1016/j.jfa.2006.03.010 |
[4] | A. D. Alexandrov, A characteristic property of the spheres, Annali di Matematica, 58 (1962), 303–315. http://dx.doi.org/10.1007/BF02413056 doi: 10.1007/BF02413056 |
[5] | H. Beresticki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., 22 (1991), 1–37. http://dx.doi.org/10.1007/BF01244896 doi: 10.1007/BF01244896 |
[6] | B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209–243. http://dx.doi.org/10.1007/BF01221125 doi: 10.1007/BF01221125 |
[7] | J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. http://dx.doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468 |
[8] | J. Keller, On solutions to $\Delta u = f (u)$, Commun. Pure Appl. Math., 10 (1957), 503–510. http://dx.doi.org/10.1002/cpa.3160100402 doi: 10.1002/cpa.3160100402 |
[9] | S. Dumont, L. Dupaigne, O. Goubet, V. Radulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271–298. http://dx.doi.org/10.1515/ans-2007-0205 doi: 10.1515/ans-2007-0205 |
[10] | R. Osserman, On the inequality $\Delta u \geq f (u)$, Pacific J. Math., 7 (1957), 1641–1647. |
[11] | H. Brezis, personal communication, January 2005. |
[12] | O. Costin, L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry, J. Differ. Equations, 249 (2010), 931–964. http://dx.doi.org/10.1016/j.jde.2010.02.023 doi: 10.1016/j.jde.2010.02.023 |
[13] | P. J. McKenna, W. Reichel, W. Walter, Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up, Nonlinear Anal. Theor., 28 (1997), 1213–1225. http://dx.doi.org/10.1016/S0362-546X(97)82870-2 doi: 10.1016/S0362-546X(97)82870-2 |
[14] | C. Bandle, M. Essèn, On the solutions of quasilinear elliptic problems with boundary blow-up, Sympos. Math., 35 (1994), 93–111. http://dx.doi.org/10.1016/C2013-0-12242-8 doi: 10.1016/C2013-0-12242-8 |
[15] | M. Del Pino, R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Anal. Theor., 48 (2002), 897–904. http://dx.doi.org/10.1016/S0362-546X(00)00222-4 doi: 10.1016/S0362-546X(00)00222-4 |
[16] | Y. Du, Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., 31 (1999), 1–18. http://dx.doi.org/10.1137/S0036141099352844 doi: 10.1137/S0036141099352844 |
[17] | J. García-Melián, R. Letelier-Albornoz, J. Sabina de Lis, Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., 129 (2001), 3593–3602. http://dx.doi.org/10.1090/S0002-9939-01-06229-3 doi: 10.1090/S0002-9939-01-06229-3 |
[18] | J. García-Melián, Large solutions for an elliptic system of quasilinear equations, J. Differ. Equations, 245 (2008), 3735–3752. http://dx.doi.org/10.1016/j.jde.2008.04.004 doi: 10.1016/j.jde.2008.04.004 |