Research article Special Issues

Uniformly analytic solutions to a class of singular partial differential equations

  • Received: 10 October 2021 Revised: 21 March 2022 Accepted: 22 March 2022 Published: 28 March 2022
  • MSC : 35A01, 35A02, 35F20

  • We study the singular nonlinear partial differential equation $ t\partial_tu = F(t, x, u, \partial_xu) $, where $ (t, x)\in\mathbb{R}\times\mathbb{R}^n $. Under some growth conditions on the coefficients of the partial Taylor expansion of $ F $, we construct the unique solution that is continuous in $ t $ and $ C^\infty $ in $ x $.

    Citation: John Paolo O. Soto, Jose Ernie C. Lope, Mark Philip F. Ona. Uniformly analytic solutions to a class of singular partial differential equations[J]. AIMS Mathematics, 2022, 7(6): 10400-10421. doi: 10.3934/math.2022580

    Related Papers:

  • We study the singular nonlinear partial differential equation $ t\partial_tu = F(t, x, u, \partial_xu) $, where $ (t, x)\in\mathbb{R}\times\mathbb{R}^n $. Under some growth conditions on the coefficients of the partial Taylor expansion of $ F $, we construct the unique solution that is continuous in $ t $ and $ C^\infty $ in $ x $.



    加载中


    [1] D. B. Bacani, J. E. C. Lope, H. Tahara, On the unique solvability of nonlinear Fuchsian partial differential equations, Tokyo J. Math., 41 (2018), 225–239. https://doi.org/10.3836/tjm/1502179268 doi: 10.3836/tjm/1502179268
    [2] M. S. Baouendi, C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Commun. Pure Appl. Math., 26 (1973), 455–475. https://doi.org/10.1002/cpa.3160260403 doi: 10.1002/cpa.3160260403
    [3] M. S. Baouendi, C. Goulaouic, Singular nonlinear Cauchy problems, J. Differ. Equations, 22 (1976), 268–291. https://doi.org/10.1016/0022-0396(76)90028-0 doi: 10.1016/0022-0396(76)90028-0
    [4] C. A. Briot, Recherches sur les propriétés des fonctions définies par des équations différentielles, J. Ecole Polytech., 21 (1856), 133–197.
    [5] G. M. Constantine, T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Am. Math. Soc., 348 (1996), 503–520. https://doi.org/10.1090/S0002-9947-96-01501-2 doi: 10.1090/S0002-9947-96-01501-2
    [6] R. Gérard, H. Tahara, Holomorphic and singular solutions of nonlinear singular first order partial differential equations, Publ. Res. Inst. Math. Sci., 26 (1990), 979–1000. https://doi.org/10.2977/prims/1195170572 doi: 10.2977/prims/1195170572
    [7] R. Gérard, H. Tahara, Théorème du type Maillet pour une classe d'équations aux dérivées partielles analytiques singulières, C. R. Acad. Sci., Paris, Sér. I, 312 (1991), 499–502.
    [8] R. Gérard, H. Tahara, Solutions holomorphes et singulières d'équations aux dérivées partielles singulières non linéaires, Publ. Res. Inst. Math. Sci., 29 (1993), 121–151. https://doi.org/10.2977/prims/1195167545 doi: 10.2977/prims/1195167545
    [9] Y. Hirasawa, On an estimate for semi-linear elliptic differential equations of the second order with Dini-continuous coefficients, Kōdai Math. Semin. Rep., 17 (1965), 10–26. https://doi.org/10.2996/kmj/1138845014 doi: 10.2996/kmj/1138845014
    [10] P. D. Lax, Nonlinear hyperbolic equations, Commun. Pure Appl. Math., 6 (1953), 231–258.
    [11] J. E. C. Lope, Existence and uniqueness theorems for a class of linear Fuchsian partial differential equations, J. Math. Sci., Tokyo, 6 (1999), 527–538.
    [12] J. E. C. Lope, A sharp existence and uniqueness theorem for linear Fuchsian partial differential equations, Tokyo J. Math., 24 (2001), 477–486. https://doi.org/10.3836/tjm/1255958188 doi: 10.3836/tjm/1255958188
    [13] J. E. C. Lope, M. P. Roque, H. Tahara, On the unique solvability of certain nonlinear singular partial differential equations, Z. Anal. Anwend., 31 (2012), 291–305. https://doi.org/10.4171/ZAA/1461 doi: 10.4171/ZAA/1461
    [14] M. Nagumo, Über das anfangswertproblem partieller differentialgleichungen, Jpn. J. Math., 18 (1942), 41–47. https://doi.org/10.4099/jjm1924.18.0_41 doi: 10.4099/jjm1924.18.0_41
    [15] L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differ. Geom., 6 (1972), 561–576.
    [16] T. Nishida, A note on a theorem of Nirenberg, J. Differ. Geom., 12 (1977), 629–633.
    [17] M. P. F. Ona, J. E. C. Lope, A Nagumo-type theorem for a class of singular nonlinear equations, In: Complex differential and difference equations, Proceedings of the school and conference held at Będlewo, Poland, Berlin: De Gruyter, 2020,409–418. https://doi.org/10.1515/9783110611427
    [18] P. V. Paramonov, $C^1$-extension and $C.1$-reflection of subharmonic functions from Lyapunov-Dini domains into $\mathbb R^N$, Sb. Math., 199 (2008), 1809–1846.
    [19] M. A. C. Tolentino, D. B. Bacani, H. Tahara, On the lifespan of solutions to nonlinear Cauchy problems with small analytic data, J. Differ. Equations, 260 (2016), 897–922. https://doi.org/10.1016/j.jde.2015.09.013 doi: 10.1016/j.jde.2015.09.013
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1496) PDF downloads(79) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog