Research article Special Issues

Sieve bootstrap test for multiple change points in the mean of long memory sequence

  • Received: 16 December 2021 Revised: 05 March 2022 Accepted: 14 March 2022 Published: 22 March 2022
  • MSC : 62F05, 62M10

  • In this paper, the sieve bootstrap test for multiple change points in the mean of long memory sequence is studied. Firstly, the ANOVA test statistics for change points detection is obtained. Secondly, sieve bootstrap statistics is constructed and the consistency under the Mallows measure is proved. Finally, the effectiveness of the method was illustrated by simulation and example analysis. Simulation results show that our method can not only control the empirical size well but also have reasonable good power.

    Citation: Wenzhi Zhao, Dou Liu, Huiming Wang. Sieve bootstrap test for multiple change points in the mean of long memory sequence[J]. AIMS Mathematics, 2022, 7(6): 10245-10255. doi: 10.3934/math.2022570

    Related Papers:

  • In this paper, the sieve bootstrap test for multiple change points in the mean of long memory sequence is studied. Firstly, the ANOVA test statistics for change points detection is obtained. Secondly, sieve bootstrap statistics is constructed and the consistency under the Mallows measure is proved. Finally, the effectiveness of the method was illustrated by simulation and example analysis. Simulation results show that our method can not only control the empirical size well but also have reasonable good power.



    加载中


    [1] E. S. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100–115. https://doi.org/10.1093/biomet/41.1-2.100 doi: 10.1093/biomet/41.1-2.100
    [2] L. Horváth, P. Kokoszka, The effect of long-range dependence on change point estimators, J. Stat. Plan. Infer., 64 (1997), 57–81. https://doi.org/10.1016/S0378-3758(96)00208-X doi: 10.1016/S0378-3758(96)00208-X
    [3] P. Kokoszka, R. Leipus, Change point in the mean of dependent observations, Stat. Probabil. Lett., 40 (1998), 385–393. https://doi.org/10.1016/S0167-7152(98)00145-X doi: 10.1016/S0167-7152(98)00145-X
    [4] C. M. Kuan, C. C. Hus, Change-point estimation of fractionally integrated process, J. Time Ser. Anal., 19 (1998), 693–708. https://doi.org/10.1111/1467-9892.00117 doi: 10.1111/1467-9892.00117
    [5] X. Shao, A simple test of changes in mean in the possible presence of long-range dependence, J. Time Ser. Anal., 32 (2011), 598–606. https://doi.org/10.1111/j.1467-9892.2010.00717.x doi: 10.1111/j.1467-9892.2010.00717.x
    [6] J. S. Bai, Estimation of a change point in multiple regression models, Rev. Econ. Stat., 79 (1997), 551–563. https://doi.org/10.1162/003465397557132 doi: 10.1162/003465397557132
    [7] J. S. Bai, P. Perron, Estimating and testing linear models with multiple structural changes, Econometrica, 66 (1998), 47–78. https://doi.org/10.2307/2998540 doi: 10.2307/2998540
    [8] J. S. Bai, P. Perron, Critical values for multiple structural change tests, Economet. J., 6 (2003), 72–78. http://dx.doi.org/10.1111/1368-423x.00102 doi: 10.1111/1368-423x.00102
    [9] J. S. Bai, P. Perron, Multiple structural change models: A simulation analysis, J. Appl. Economet., 18 (2003), 1–22. https://doi.org/10.1017/CBO9781139164863.010 doi: 10.1017/CBO9781139164863.010
    [10] J. M. Bardet, W. C. Kengne, O. Wintenberger, Detecting multiple change-points in general causal time series using penalized quasi-likelihood, Electron. J. Stat., 6 (2010), 435–477. https://doi.org/10.48550/arXiv.1008.0054 doi: 10.48550/arXiv.1008.0054
    [11] M. Kejriwal, P. Perron, J. Zhou, Wald tests for detecting multiple structural changes in persistence, Economet. Theor., 29 (2013), 289–323. http://dx.doi.org/10.1017/S0266466612000357 doi: 10.1017/S0266466612000357
    [12] L. J. Ma, J. G. Andrew, S. Georgy, Multiple change point detection and validation in autoregressive time series data, Stat. Pap., 61 (2020), 1507–1528. http://dx.doi.org/10.1007/s00362-020-01198-w doi: 10.1007/s00362-020-01198-w
    [13] I. B. Macnelill, V. K. Jandhyala, A. Kaul, S. B. Fotopoulos, Multiple change-point models for time series, Environmetrics, 31 (2020), 1–15. https://doi.org/10.1002/env.2593 doi: 10.1002/env.2593
    [14] S. Bouzebda, A. A. Ferfache, Asymptotic properties of M-estimators based on estimating equations and censored data in semi-parametric models with multiple change points, J. Math. Anal. Appl., 497 (2021), 297–318. http://dx.doi.org/10.1016/j.jmaa.2020.124883 doi: 10.1016/j.jmaa.2020.124883
    [15] M. A. K. Noriah, A. A. A. Emad-eldin, An ANOVA-type test for multiple change points, Stat. Pap., 55 (2014), 1159–1178. http://dx.doi.org/10.1007/s00362-013-0559-1 doi: 10.1007/s00362-013-0559-1
    [16] J. Hidalgo, P. M. Robinson, Testing for structural change in a long-memory environment, J. Econometrics, 70 (1996), 159–174. http://dx.doi.org/10.1016/0304-4076(94)01687-9 doi: 10.1016/0304-4076(94)01687-9
    [17] S. Lazarova, Testing for structural change in regression with long memory processes, J. Econometrice, 129 (2005), 329–372. http://dx.doi.org/10.1016/j.jeconom.2004.09.011 doi: 10.1016/j.jeconom.2004.09.011
    [18] L. Wang, Change point estimation in long memory nonparametric models with applications, Commun. Stat.-Simul. C., 37 (2008), 48–61. http://dx.doi.org/10.1080/03610910701723583 doi: 10.1080/03610910701723583
    [19] P. Bühlmann, Sieve bootstrap for time series, Bernoulli, 3 (1997), 123–148. https://doi.org/10.2307/3318584 doi: 10.2307/3318584
    [20] A. M. Alonso, D. Peña, J. Romo, Forecasting time series with sieve bootstrap, J. Stat. Plan. Infer., 100 (2002), 1–11. https://doi.org/10.1016/s0378-3758(01)00092-1 doi: 10.1016/s0378-3758(01)00092-1
    [21] A. M. Alonso, D. Peña, J. Romo, On sieve bootstrap prediction intervals, Stat. Probabil. Lett., 65 (2003), 13–20. https://doi.org/10.1016/S0167-7152(03)00214-1 doi: 10.1016/S0167-7152(03)00214-1
    [22] A. M. Alonso, D. Peña, J. Romo, Introducing model uncertainty in time series bootstrap, Stat. Sinica, 14 (2004), 155–174. https://doi.org/10.1007/s00440-003-0309-8 doi: 10.1007/s00440-003-0309-8
    [23] P. Mukhopadhyay, V. A. Samaranayake, Prediction intervals for time series: A modified sieve bootstrap approach, Commun. Stat.-Simul. C., 39 (2010), 517–538. https://doi.org/10.1080/03610910903506521 doi: 10.1080/03610910903506521
    [24] D. S. Poskitt, Properties of the sieve bootstrap for fractionally integrated and non-invertible processes, J. Time Ser. Anal., 29 (2008), 224–250. https://doi.org/10.1111/j.1467-9892.2007.00554.x doi: 10.1111/j.1467-9892.2007.00554.x
    [25] H. E. Hurst, Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng. Tans., 116 (1951), 770–799. https://doi.org/10.1016/0013-4694(51)90043-0 doi: 10.1016/0013-4694(51)90043-0
    [26] J. Beran, Statistics for long-memory process, New York: Chapman and Hall, 1994. http://dx.doi.org/10.2307/2983481
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1649) PDF downloads(83) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog