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Abstract: In this paper, the sieve bootstrap test for multiple change points in the mean of long
memory sequence is studied. Firstly, the ANOVA test statistics for change points detection is obtained.
Secondly, sieve bootstrap statistics is constructed and the consistency under the Mallows measure is
proved. Finally, the effectiveness of the method was illustrated by simulation and example analysis.
Simulation results show that our method can not only control the empirical size well but also have
reasonable good power.

Keywords: long memory; multiple change points; ANOVA; sieve bootstrap; test
Mathematics Subject Classification: 62F05, 62M10

1. Introduction

The presence of change point can easily mislead the conventional time series analysis and result
in erroneous conclusions. One of the problems in change point analysis is to detect whether there are
change points in the statistical sequence.

The statistical literature on change point problem start with Page (1954) [1], who publish an article
on quality inspection, which has attracted the attention of experts in various fields. Horváth and
Kokoszka et al. (1997,1998) [2, 3] study the CUSUM estimator of mean change point and obtain
the limiting distribution for the estimator. Kuan et al. (1998) [4] propose least square method to
estimate mean change point in fractionally integrated process. Shao (2011) [5] use ratio statistics
to solve the testing problem of mean change point. In the actual statistical test, the data sequence
may have more than one change points. The detection method designed for at-most-one change
point problem performs poor under multiple change point detection problem. So the study of the
multiple change points detection is of great significance. Among them, Bai et al. (1997, 1998,
2003) [6–9] consider the estimation and detection problem of the multiple change points in linear
process. Bardet et al. (2010) [10] and Kejriwal et al. (2013) [11] use different methods to solve the same
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problem. Lijing et al. (2020) [12] and Macneill et al. (2020) [13, 14] consider the detection problem
of multiple change points in linear process. Noriah et al. (2014) [15] propose ANOVA statistics to
test the multiple change points in i.i.d. sequence. The limiting distribution of test statistics is derived
under i.i.d. assumption. While, it is not easy to obtain limiting distribution for long range dependence
sequence. Fortunately, bootstrap method give a chance to solve this problem more conveniently.

Long memory processes are prevalent in many areas, for example, in geophysical sciences,
microeconomic, asset pricing, stock returns and exchange rates. Hidalago and Robinson et al.
(1996) [16] propose the Wald method to test mean change point in long memory sequence. Lazarova
(2005) [17] study the change point detection problem in linear regression models with long memory
error. Wang (2008) [18] give the estimation method for change point in non-parametric regression
models with long memory error. The above literatures focus on the single change point of long memory
sequence. However, in practice, due to the interference of various factors, the statistical property of
long memory sequence may change not only once, but many times. Thus, it is very necessary to study
the multiple point problem of long memory sequence. In this paper, we study the multiple change point
detection problem for long memory sequence.

Sieve bootstrap method was introduced by Bühlmann (1997) [19] firstly. Alonso et al. (2002,
2003, 2004) [20–22] and Mukhopadhyay et al. (2010) [23] use sieve bootstrap to study the forecasting
problems for time series. Poskitt (2008) [24] prove the properties of the sieve bootstrap method and
point out that sieve bootstrap method is very useful to analyze long memory sequence. So, in this paper,
we consider sieve bootstrap test for multiple change points in the mean of long memory sequence.

2. The model and the sieve bootstrap

We assume that n observations X1, X2, · · · , Xn are given by:

Xt = µ(t) + et, t = 1, 2, · · · , n,

µ(t) =


µ1, 1 ≤ t ≤ n1,

µ2, n1 + 1 ≤ t ≤ n2,

· · ·

µk+1, nk+1 ≤ t ≤ n,

(2.1)

where et = ϕ(B)εt =
∞∑
j=0
ϕ jεt− j, ϕ j ∼ c0 jd−1(0 < c0 < ∞, j → ∞, 0 < d < 0.5), and

∞∑
j=0
ϕ2

j < ∞, εt is an

i.i.d. process with mean zero and finite variance σ2. The symbol “∼” indicates that the ratio of left- and
right-hand sides tends to 1. The sequence {et, t = 1, 2, · · · , n} is a linear stationary sequence with long
memory, so is {Xt, t = 1, 2, · · · , n}. Parameters µ1, µ2, · · · , µk+1 are the finite constant and n1, n2, · · · , nk

are the unknown change point. We consider here the problem of testing the null hypothesis of no
change point:

H0 : µ1 = µ2 = · · · = µk+1 (2.2)

against the multiple change points alternative:

H0 : µ1 = µ2 = · · · = µk+1. (2.3)
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Let τ = (0 < τ1 < τ2 < · · · < τk < 1) be any partition of [0,1] , [nτi] ≥ [nτi−1] + 2, i = 1, 2, · · · , k + 1

with τ0 = 0, τk+1 = 1. Define di,n = [nτi] − [nτi−1], i = 1, 2, · · · , k + 1. Let S0 = 0, Sr =
r∑

j=1
Xj ,r =

1, 2, · · · , n and X̄ = 1
nSn. For i = 1, 2, · · · , k +1, the mean of X[nτi−1] +1, · · · ,X[nτi] is X̄i = 1

di,n

[nτi]∑
t=[nτi−1]+1

Xt.

The one-way ANOVA-type test statistic proposed by Noriah et al. (2014) [15] is:

Zn(k) :=
∫
···
∫

τ
Vn(τ)dτ, (2.4)

where

Vn(τ) = c−2
0 n−2d

k+1∏
i=1

ai.nS S Tr(τ),

and

S S Tr(τ) =

k+1∑
i=1

di,n(X̄i − X̄)2.

Often, the number of change points k is unknown and we assume that it has an upper bound K.
Test statistic is defined as Zn(K) = max

1≤k≤KZn(k) and the limiting distribution is approximated by sieve
bootstrap method.
{Xt} is invertible and has an AR(∞) representation. The specific steps of the sieve bootstrap method

are as follows:
Step 1. Having observed the samples x1, x2, · · · , xn , we start estimating d̂. Specific estimation method
can be referred to Hurst (1951) [25];
Step 2. Make d̂-order difference on {xt} to obtain the sequence {yt}. To fit the AR(p) autoregressive
process of {yt}, that is

ŷt = φ̂0 + φ̂1y1 + φ̂2y2 + · · · + φ̂pyt−p. (2.5)

Given a maximum AR order p = p(n) of the autoregressive approximation, then choose the optimal
p̂ using the BIC criterion, where p(n) = o(n), and p(n) → ∞ as the sample size n → ∞. We
obtain the residuals ε̂1, ε̂2, · · · , ε̂t. The residual is re-sampled to obtain new residual sequence, and
the autoregressive process y∗t = ŷt + ε̂∗t is constructed for the new residual sequence.
Step 3. The new long memory sequence {x∗t } is constructed by x∗t = (1 − B)−d̂y∗t . Calculates the
corresponding sieve bootstrap test statistics value z∗n(K):

z∗n(K) := max
1≤k≤K

∫
···
∫

τ
c−2

0 n−2d
k+1∏
i=1

di.n

k+1∑
i=1

di,n(x̄i
∗ − x̄∗)2dτ. (2.6)

Step 4. Repeat Steps 2–3 B times and obtain B values z∗i (K), i = 1, 2, · · · , B. The sieve bootstrap
approximation of the p value is p∗ = 1

B#{i : z∗i (K) ≥ zn(K)}, where # denotes the number of elements in

the set and zn(K) := max
1≤k≤K

∫
···
∫

τ
c−2

0 n−2d
k+1∏
i=1

di.n

k+1∑
i=1

di,n(x̄i − x̄)2dτ. We reject H0 if p∗ < α.

3. Main results

In order to prove that the asymptotic results are consistent, the following assumption and lemmas
are required [24].
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Assumption 1. Let ξt denote the σ-algebra of events determined by εs, s ≤ t. Also, assume that {εt}t∈Z

are i.i.d and that
E[εt|ξt−1] = 0,E[ε2

t |ξt−1] = σ2, t ∈ Z.

Furthermore, assume that E[ε4
t ] < ∞, t ∈ Z.

Lemma 1. Assume that n observations X1,X2, · · · ,Xn satisfy Eq (2.1). Then, for t ∈ Z, 0 < d <

0.5, p = p(n)→ ∞, we have

1
n

n∑
t=1

(ε̂∗t − εt)2 = Oa.s{(
p

λmin(Γp)
)(

logn
n

)1−2d}, (3.1)

where λmin(Γp) = O{p−q} , q ≥ 0 .
Proof. See Lemma 2 in reference [24], the proof is omitted.
Lemma 2. Assume that n observations X1,X2, · · · ,Xn satisfy Eq (2.1). We obtain the represents

e∗t =
∞∑
j=0
ϕ̂ jε̂

∗
t− j, et =

∞∑
j=0
ϕ jεt− j, then, for t ∈ Z, 0 < d < 0.5, p(n)→ ∞, we have

∞∑
j=0

|ϕ̂ j − ϕ j| = Oa.s{(
p5

λmin(Γp)
)

1
2 (

logn
n

)
1
2−d}, (3.2)

where λmin(Γp) = O{p−q} , q ≥ 0 .
Proof. See Lemma 3 in reference [24], the proof is omitted.
Theorem 1. Let η(FX,FY) denotes Mallow’s measure of the distance between two probability
distribution FX and FY , defined as in f {E||X−Y ||2}

1
2 where the infimum is taken over all square integrable

random variables X and Y in Rm with marginal distributions FX and FY . Assume that n observations
X1,X2, · · · ,Xn satisfy Eq (2.1). So if the null hypothesis H0 is true, when n→ ∞ , for 0 < d < 0.5 and
p = p(n)→ ∞. Then with probability one

η(FZ∗n(k),FZn(k)) = O{(
p5

λmin(Γ2
p)

)
1
2 (

logn
n

)
1
2−d}, (3.3)

where Zn(k) denotes for the test statistic, Z∗n(k) denotes for the sieve bootstrap test statistic, FZn(k)

denotes for the true distribution, FZ∗n(k) denotes for the sieve bootstrap approximate distribution,
λmin(Γp) = O{p−q}, q ≥ 0 .

Proof. From the definition of e∗t =
∞∑
j=0
ϕ̂ jε̂

∗
t− j and et =

∞∑
j=0
ϕ jεt− j , we have

X̄i =
1

di,n

[nτi]∑
t=[nτi−1]+1

Xt =
1

di,n

[nτi]∑
t=[nτi−1]+1

(µt + et)

and

X̄∗i =
1

di,n

[nτi]∑
t=[nτi−1]+1

X∗t =
1

di,n

[nτi]∑
t=[nτi−1]+1

(µt + e∗t ). (3.4)

It follows that

|X̄i − X̄∗i |
2 ≤

1
di,n

[nτi]∑
t=[nτi−1]+1

|Xt − X∗t |
2 =

1
di,n

[nτi]∑
t=[nτi−1]+1

|et − e∗t |
2. (3.5)
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Where Z∗n(k) denotes for the sieve bootstrap test statistic, that is

Zn
∗(k) :=

∫
···
∫

τ
c−2

0 n−2d
k+1∏
i=1

di.n

k+1∑
i=1

di,n(X̄i
∗
− X̄∗)2dτ.

So applying the mean value theorem of calculus, we have

Zn(k) − Z∗n(k) =

n∑
t=1

∂Zi(k)
∂Xt

(Xt − X∗t ) =

n∑
t=1

∂Zi(k)
∂Xt

(et − e∗t ),

and

||Zn(k) − Z∗n(k)|| ≤
n∑

t=1

||
∂Zi(k)
∂Xt

|||Xt − X∗t | =
n∑

t=1

||
∂Zi(k)
∂Xt

|||et − e∗t |. (3.6)

By assumption, n∂Zi(k)
∂Xt

are continuous on the domain R and hence uniformly bounded, so there is M > 0.
We can therefore conclude that n||∂Zi(k)

∂Xt
|| ≤ M and Zn(k) will satisfy the Lipschitz condition, that is

||Zn(k) − Z∗n(k)||2 ≤
1
n

n∑
t=1

M2|et − e∗t |
2. (3.7)

Similar to the proof of Theorem 1 in literature [22], from the definition of Mallows metric and applying
the Cauchy-Schwartz inequality, we have

η(FZ∗n(k),FZn(k))2 ≤ E[E∗[||Z∗n(k) − Zn(k)||2]

≤ E[E∗[
1
n

n∑
t=1

M2|et − e∗t |
2]

≤
1
n

n∑
t=1

E[E∗[M2]]
1
n

n∑
t=1

E[E∗[(et − e∗t )2]]. (3.8)

We obtain the representation e∗t =
∞∑
j=0
ϕ̂ jε̂

∗
t− j, et =

∞∑
j=0
ϕ jεt− j, from which it follows that

et − e∗t =

∞∑
j=0

(ϕ j − ϕ̂ j)εt− j +

∞∑
j=0

ϕ̂ j(εt− j − ε̂
∗
t− j) = u(t) + v(t).

Where 1
n

n∑
t=1

E[E∗[M2]] ≤ ∞, thus we are faced with the task of evaluating E[E∗[(u(t)+v(t))2]. Consider

E[E∗[v(t)2] firstly. By construction, εt − ε̂
∗
t are i.i.d with respect to all the observations X1,X2, · · · ,Xt.

Hence

E∗[v(t)2] =
1
n

n∑
t=1

(ε̂∗t − εt)2
∞∑
j=0

|ϕ̂ j|
2. (3.9)

Using Lemma 1 we get that,

1
n

n∑
t=1

(ε̂∗t − εt)2 = Oa.s{(
p

λmin(Γp)
)(

logn
n

)1−2d}. (3.10)
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Since
∞∑
j=0
|ϕ j| ≤ ∞, using Lemma 2 we can conclude that

∞∑
j=0

|ϕ̂ j| ≤

∞∑
j=0

|ϕ j| +

∞∑
j=0

|ϕ̂ j − ϕ j| = O(1) + O{(
p5

λmin(Γ2
p)

)
1
2 (

logn
n

)
1
2−d}.

Thus,

E[E∗[v(t)2]] = O{(
p

λmin(Γp)
)(

logn
n

)1−2d}. (3.11)

Now consider E[E∗[u(t)2]]. Since u(t) =
∞∑
j=0

(ϕ j − ϕ̂ j)εt− j is a constant relative to all the observations

X1,X2, · · · ,Xt, we have
E[E∗[u(t)2]] = E[u(t)2E∗(1)].

According to Poskitt (2008) [24], under H0, Xt has the following spectral density

f (ω) =
σ2|ϕ(eiω)|2

2φ
.

Thus,

E[u(t)2] =
σ2

2π

∫ π

−π

|ϕ(eiω) − ϕ̂(eiω)|2|φ(eiω)ϕ(eiω)|2dω. (3.12)

For any δ > 0, ω ∈ (−π, π], from Lemma 4 in literature [24], we have

|φ(eiω) − ϕ(eiω)| ≤ 1 + |φ(eiω)ϕ(eiω) − 1| ≤ 1 + δ.

Hence

E[u(t)2] ≤
σ2

2π

∫ π

−π

|ϕ(eiω) − ϕ̂(eiω)|2(1 + δ)2dω =
[δ(1 + δ)]2

2π

∞∑
j=0

|ϕ̂ j − ϕ j|
2.

And by Lemma 2 this equals

∞∑
j=0

|ϕ̂ j − ϕ j| = Oa.s{(
p5

λmin(Γp)
)

1
2 (

logn
n

)
1
2−d}.

We can therefore conclude that

E[u(t)2] = O{(
p5

λmin(Γp)
)(

logn
n

)1−2d}. (3.13)

To sum up, we have

η(FZ∗n(k),FZn(k)) = O{(
p5

λmin(Γ2
p)

)
1
2 (

logn
n

)
1
2−d}.

Which completes the proof of the theorem.
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4. Simulation and application

4.1. Simulation

In this section, we evaluate the performance of the test statistics trough a simulation. Experiments
are conducted based on sample sizes n = 400 and n = 600 with 1000 replications. Consider the
following data generation process:

Xt = µ(t) + et, t = 1, 2, · · · , n,

µ(t) =


µ1, 1 ≤ t ≤ n1,

µ2, n1 + 1 ≤ t ≤ n2,

· · ·

µk+1, nk+1 ≤ t ≤ n,

where et is a FARIMA(0,d,0) process. Simulation studies are based on B=5000 and α = 0.05.
Take d = 0.1, 0.2, 0.3, 0.4. Under H0, µ1 = µ2 = · · · = µk+1 = 0, the empirical sizes of Z∗n(K) are
summarized in Table 1. Under H1, the number of change points K = 2 and 3. When K = 2, the
change point combinations (n1, n2) are divided into three situations: ( 1

8n, 3
8n), ( 3

8n, 5
8n) and (5

8n, 7
8n) and

(µ1, µ2, µ3) = (0, 1, 2). When K = 3, the change point combinations (n1, n2, n3) are divided into two
situations: (1

8n, 3
8n, 5

8n) and (3
8n, 5

8n, 7
8n). The mean parameters (µ1, µ2, µ3, µ4) are taken as (0, 1, 2, 3)

and (0, 1,−1, 2). The empirical powers of Z∗n(K) are shown from Table 2 to Table 5.

Table 1. The empirical size of Z∗n(K).

d n = 400 n = 600
0.1 0.025 0.037
0.2 0.036 0.045
0.3 0.048 0.051
0.4 0.056 0.055

Table 1 displays the empirical size of Z∗n(K) under H0. With the increase of sample size n, the empirical
size is close to the significant level α = 0.05.

Table 2. The empirical power with n = 400.

d (1
8n, 3

8n) ( 3
8n, 5

8n) ( 5
8n, 7

8n)

0.1 0.699 0.721 0.704
0.2 0.686 0.709 0.737
0.3 0.715 0.753 0.828
0.4 0.853 0.714 0.895
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Table 3. The empirical power with n = 600.

d (1
8n, 3

8n) ( 3
8n, 5

8n) ( 5
8n, 7

8n)

0.1 0.684 0.643 0.776
0.2 0.688 0.715 0.675
0.3 0.722 0.825 0.870
0.4 0.885 0.909 0.916

Table 4. The empirical power with n = 400.

d (µ1, µ2, µ3, µ4) ( 1
8n, 3

8n, 5
8n) ( 3

8n, 5
8n, 7

8n)

0.1 (0,1,2,3) 0.614 0.693
(0,1,-1,2) 0.559 0.685

0.2 (0,1,2,3) 0.640 0.708
(0,1,-1,2) 0.668 0.690

0.3 (0,1,2,3) 0.713 0.734
(0,1,-1,2) 0.682 0.699

0.4 (0,1,2,3) 0.775 0.877
(0,1,-1,2) 0.717 0.850

Table 5. The empirical power with n = 600.

d (µ1, µ2, µ3, µ4) ( 1
8n, 3

8n, 5
8n) (3

8n, 5
8n, 7

8n)

0.1 (0,1,2,3) 0.702 0.685
(0,1,-1,2) 0.694 0.696

0.2 (0,1,2,3) 0.698 0.690
(0,1,-1,2) 0.709 0.689

0.3 (0,1,2,3) 0.732 0.877
(0,1,-1,2) 0.786 0.792

0.4 (0,1,2,3) 0.814 0.901
(0,1,-1,2) 0.827 0.874

It can be seen from Tables 2–5 that the empirical power of Z∗n(K) under H1 increases significantly when
the sample size n increases. The larger d is, the bigger the value of the empirical power.

4.2. Application

In this subsection, the method in this paper is used to detect mean change in monthly
average temperature of Northern Hemisphere (1854–1989). The data comes from Beran (1994) [26]
and d̂ = 0.37.
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Wang (2008) [18] suggests that there is one change point in the data. Thus, we take K = 1 and
repeat Steps 1–4 to generate 5000 values of sieve bootstrap statistics. Figure 1 shows these values. The
horizontal solid line is significant level α = 0.05. p∗ = 1

5000 {#i : z∗i (K) ≥ zn(K)} = 0.0020 < 0.05. Thus,
we reject H0.

Figure 1. The value of 5000 sieve bootstrap test statistics.

Further, the least square method in Kuan (1998) [4] is used to estimate location of change point.
The change point estimator is in the 860 observation, corresponding to July 1925. Figure 2 shows these
results. The vertical line in the figure indicates the position of the change point. The two horizontal
lines in the figure indicate the mean value before and after the change point. The mean value before the
change point is -0.34, and the mean value after the change point is 0.02, which means that the monthly
average temperature in the Northern Hemisphere has increased.

Figure 2. Monthly average temperature data of the Northern Hemisphere from 1854 to 1989.
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5. Conclusions

This paper considers the sieve bootstrap test for multiple change points in the mean of long memory
sequence. The consistency of sieve bootstrap approximation is proved. Numerical simulation and
application results support the conclusion.
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19. P. Bühlmann, Sieve bootstrap for time series, Bernoulli, 3 (1997), 123–148.
https://doi.org/10.2307/3318584

20. A. M. Alonso, D. Peña, J. Romo, Forecasting time series with sieve bootstrap, J. Stat. Plan. Infer.,
100 (2002), 1–11. https://doi.org/10.1016/s0378-3758(01)00092-1

21. A. M. Alonso, D. Peña, J. Romo, On sieve bootstrap prediction intervals, Stat. Probabil. Lett., 65
(2003), 13–20. https://doi.org/10.1016/S0167-7152(03)00214-1

22. A. M. Alonso, D. Peña, J. Romo, Introducing model uncertainty in time series bootstrap, Stat.
Sinica, 14 (2004), 155–174. https://doi.org/10.1007/s00440-003-0309-8

23. P. Mukhopadhyay, V. A. Samaranayake, Prediction intervals for time series: A
modified sieve bootstrap approach, Commun. Stat.-Simul. C., 39 (2010), 517–538.
https://doi.org/10.1080/03610910903506521

24. D. S. Poskitt, Properties of the sieve bootstrap for fractionally integrated and non-
invertible processes, J. Time Ser. Anal., 29 (2008), 224–250. https://doi.org/10.1111/j.1467-
9892.2007.00554.x

25. H. E. Hurst, Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng. Tans., 116 (1951),
770–799. https://doi.org/10.1016/0013-4694(51)90043-0

26. J. Beran, Statistics for long-memory process, New York: Chapman and Hall, 1994.
http://dx.doi.org/10.2307/2983481

© 2022 Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 6, 10245–10255.

http://dx.doi.org/http://dx.doi.org/10.1007/s00362-020-01198-w
http://dx.doi.org/https://doi.org/10.1002/env.2593
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmaa.2020.124883
http://dx.doi.org/http://dx.doi.org/10.1007/s00362-013-0559-1
http://dx.doi.org/http://dx.doi.org/10.1016/0304-4076(94)01687-9
http://dx.doi.org/http://dx.doi.org/10.1016/j.jeconom.2004.09.011
http://dx.doi.org/http://dx.doi.org/10.1080/03610910701723583
http://dx.doi.org/https://doi.org/10.2307/3318584
http://dx.doi.org/https://doi.org/10.1016/s0378-3758(01)00092-1
http://dx.doi.org/https://doi.org/10.1016/S0167-7152(03)00214-1
http://dx.doi.org/https://doi.org/10.1007/s00440-003-0309-8
http://dx.doi.org/https://doi.org/10.1080/03610910903506521
http://dx.doi.org/https://doi.org/10.1111/j.1467-9892.2007.00554.x
http://dx.doi.org/https://doi.org/10.1111/j.1467-9892.2007.00554.x
http://dx.doi.org/https://doi.org/10.1016/0013-4694(51)90043-0
http://dx.doi.org/http://dx.doi.org/10.2307/2983481
http://creativecommons.org/licenses/by/4.0

	Introduction
	The model and the sieve bootstrap
	Main results
	Simulation and application
	Simulation
	Application

	Conclusions

