Research article Special Issues

Novel analysis of nonlinear dynamics of a fractional model for tuberculosis disease via the generalized Caputo fractional derivative operator (case study of Nigeria)

  • Received: 08 December 2021 Revised: 02 March 2022 Accepted: 07 March 2022 Published: 21 March 2022
  • MSC : 46S40, 47H10, 54H25

  • We propose a new mathematical framework of generalized fractional-order to investigate the tuberculosis model with treatment. Under the generalized Caputo fractional derivative notion, the system comprises a network of five nonlinear differential equations. Besides that, the equilibrium points, stability and basic reproductive number are calculated. The concerned derivative involves a power-law kernel and, very recently, it has been adapted for various applied problems. The existence findings for the fractional-order tuberculosis model are validated using the Banach and Leray-Schauder nonlinear alternative fixed point postulates. For the developed framework, we have generated various forms of Ulam's stability outcomes. To investigate the estimated response and nonlinear behaviour of the system under investigation, the efficient mathematical formulation known as the $ \wp $-Laplace Adomian decomposition technique algorithm was implemented. It is important to mention that, with the exception of numerous contemporary discussions, spatial coherence was considered throughout the fractionalization procedure of the classical model. Simulation and comparison analysis yield more versatile outcomes than the existing techniques.

    Citation: Saima Rashid, Yolanda Guerrero Sánchez, Jagdev Singh, Khadijah M Abualnaja. Novel analysis of nonlinear dynamics of a fractional model for tuberculosis disease via the generalized Caputo fractional derivative operator (case study of Nigeria)[J]. AIMS Mathematics, 2022, 7(6): 10096-10121. doi: 10.3934/math.2022562

    Related Papers:

  • We propose a new mathematical framework of generalized fractional-order to investigate the tuberculosis model with treatment. Under the generalized Caputo fractional derivative notion, the system comprises a network of five nonlinear differential equations. Besides that, the equilibrium points, stability and basic reproductive number are calculated. The concerned derivative involves a power-law kernel and, very recently, it has been adapted for various applied problems. The existence findings for the fractional-order tuberculosis model are validated using the Banach and Leray-Schauder nonlinear alternative fixed point postulates. For the developed framework, we have generated various forms of Ulam's stability outcomes. To investigate the estimated response and nonlinear behaviour of the system under investigation, the efficient mathematical formulation known as the $ \wp $-Laplace Adomian decomposition technique algorithm was implemented. It is important to mention that, with the exception of numerous contemporary discussions, spatial coherence was considered throughout the fractionalization procedure of the classical model. Simulation and comparison analysis yield more versatile outcomes than the existing techniques.



    加载中


    [1] Tackling the dual burden of TB and diabetes for patients and their families, World Health Organization, 2019. Available from: https://www.who.int/news/item/14-11-2019-dept-newstackling-the-dual-burden-of-tb-and-diabetes-for-patients-and-their-families.
    [2] S. E. Geerlings, A. I. M. Hoepelman, Immune dysfunction in patients with diabetes mellitus (DM), FEMS Immunol. Med. Mic., 26 (1999), 259–265. https://doi.org/10.1111/j.1574-695X.1999.tb01397.x doi: 10.1111/j.1574-695X.1999.tb01397.x
    [3] D. Morse, D. R. Brothwell, P. J. Ucko, Tuberculosis in ancient Egypt, Am. Rev. Respir. Dis., 90 (1964), 524–541.
    [4] J. P. Aparicio, A. F. Capurro, C. Castillo-Chavez, Transmission and dynamics of tuberculosis on generalized households, J. Theor. Biol., 206 (2000), 327–341. https://doi.org/10.1006/jtbi.2000.2129 doi: 10.1006/jtbi.2000.2129
    [5] K. Floyd, P. Glaziou, A. Zumla, M. Raviglione, The global tuberculosis epidemic and progress in care, prevention, and research: An overview in year 3 of the end TB era, Lancet Respir. Med., 6 (2018), 299–314. https://doi.org/10.1016/S2213-2600(18)30057-2 doi: 10.1016/S2213-2600(18)30057-2
    [6] C. Dye, Global epidemiology of tuberculosis, Lancet, 367 (2006), 938–940. https://doi.org/10.1016/S0140-6736(06)68384-0 doi: 10.1016/S0140-6736(06)68384-0
    [7] G. A. Colditz, T. F. Brewer, C. S. Berkey, M. E. Wilson, E. Burdick, H. V. Fineberg, et al., Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature, JAMA, 271 (1994), 698–702. https://doi.org/10.1001/jama.1994.03510330076038 doi: 10.1001/jama.1994.03510330076038
    [8] O. A. Arqub, A. El-Ajou, Solution of the fractional epidemic model by homotopy analysis method, J. King Saud Univ. Sci., 25 (2013), 73–81. https://doi.org/10.1016/j.jksus.2012.01.003 doi: 10.1016/j.jksus.2012.01.003
    [9] M. Rafei, D. D. Ganji, H. Daniali, Solution of the epidemic model by homotopy perturbation method, Appl. Math. Comput., 187 (2007), 1056–1062. https://doi.org/10.1016/j.amc.2006.09.019 doi: 10.1016/j.amc.2006.09.019
    [10] S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744–752. https://doi.org/10.1093/ije/29.4.744 doi: 10.1093/ije/29.4.744
    [11] F. Haq, K. Shah, A. Khan, M. Shahzad, G. Rahman, Numerical solution of fractional order epidemic model of a vector born disease by laplace adomian decomposition method, Punjab Univ. J. Math., 49 (2017), 13–22.
    [12] I. Ullah, S. Ahmad, Q. Al-Mdallal, Z. A. Khan, H. Khan, A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Differ. Equ., 2020 (2020), 499. https://doi.org/10.1186/s13662-020-02950-0 doi: 10.1186/s13662-020-02950-0
    [13] A. I. Enagi, M. O. Ibrahim, N. I. Akinwande, M. Bawa, A. Wachin, A mathematical model of tuberculosis control incorporating vaccination, latency and infectious treatments (case study of Nigeria), Int. J. Math. Comput. Sci., 12 (2017), 97–106.
    [14] F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Timefractional fishers equations, Fractals, 30 (2022), 22400051.
    [15] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical $h$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110.
    [16] F. Jin, Z. S. Qian, Y. M. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 2022. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [17] Z. Y. He, A. Abbes, H. Jahanshahi, N. D. Alotaibi, Y. Wang, Fractionalorder discrete-time SIR epidemic model with vaccination: Chaos and complexity, Mathematics, 10 (2022), 165. https://doi.org/10.3390/math10020165 doi: 10.3390/math10020165
    [18] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multistep methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [19] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026.
    [20] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [21] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on $\psi$-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
    [22] M. A. Iqbal, Y. Wang, M. M. Miah, M. S. Osman, Study on Date-Jimbo-Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions, Fractal Fract., 6 (2022), 4. https://doi.org/10.3390/fractalfract6010004 doi: 10.3390/fractalfract6010004
    [23] T. H. Zhao, M. I. Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7310 doi: 10.1002/mma.7310
    [24] Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. I. Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2021), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
    [25] M. Nazeer, F. Hussain, M. I. Khan, A. ur-Rehman, E. R. ElZahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2021), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
    [26] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [27] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [28] I. Podlubny, Fractional differential equations: Mathematics in science and engineering, Academic Press, New York 1999.
    [29] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland, Amsterdam, 2006.
    [30] F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Res. Nonlinear Anal., 1 (2018), 88–98.
    [31] K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985.
    [32] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003.
    [33] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
    [34] X. Q. Zhao, The theory of basic reproduction ratios, In: Dynamical systems in population biology, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-56433-3_11
    [35] E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems, Phys. Lett. A, 358 (2006), 1–4. https://doi.org/10.1016/j.physleta.2006.04.087 doi: 10.1016/j.physleta.2006.04.087
    [36] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [37] S. Rashid, K. T. Kubra, H. Jafari, S. U. Lehre, A semi-analytical approach for fractional order Boussinesq equation in a gradient unconfined aquifers, Math. Meth. Appl. Sci., 45 (2022), 1033–1062. https://doi.org/10.1002/mma.7833 DOI: 10.1002/mma.7833 doi: 10.1002/mma.7833
    [38] S. Ahmad, R. Ullah, D. Baleanu, Mathematical analysis of tuberculosis control model using nonsingular kernel type Caputo derivative, Adv. Diff. Equ., 2021 (2021), 26. https://doi.org/10.1186/s13662-020-03191-x doi: 10.1186/s13662-020-03191-x
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1705) PDF downloads(111) Cited by(7)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog