Research article

Some qualitative properties of solutions to a nonlinear fractional differential equation involving two $ \Phi $-Caputo fractional derivatives

  • Received: 12 October 2021 Revised: 20 February 2022 Accepted: 01 March 2022 Published: 18 March 2022
  • MSC : 26A33, 34A08

  • The momentous objective of this work is to discuss some qualitative properties of solutions such as the estimate of the solutions, the continuous dependence of the solutions on initial conditions and the existence and uniqueness of extremal solutions to a new class of fractional differential equations involving two fractional derivatives in the sense of Caputo fractional derivative with respect to another function $ \Phi $. Firstly, using the generalized Laplace transform method, we give an explicit formula of the solutions to the aforementioned linear problem which can be regarded as a novelty item. Secondly, by the implementation of the $ \Phi $-fractional Gronwall inequality, we analyze some properties such as estimates and continuous dependence of the solutions on initial conditions. Thirdly, with the help of features of the Mittag-Leffler functions (MLFs), we build a new comparison principle for the corresponding linear equation. This outcome plays a vital role in the forthcoming analysis of this paper especially when we combine it with the monotone iterative technique alongside facet with the method of upper and lower solutions to get the extremal solutions for the analyzed problem. Lastly, we present some examples to support the validity of our main results.

    Citation: Choukri Derbazi, Qasem M. Al-Mdallal, Fahd Jarad, Zidane Baitiche. Some qualitative properties of solutions to a nonlinear fractional differential equation involving two $ \Phi $-Caputo fractional derivatives[J]. AIMS Mathematics, 2022, 7(6): 9894-9910. doi: 10.3934/math.2022552

    Related Papers:

  • The momentous objective of this work is to discuss some qualitative properties of solutions such as the estimate of the solutions, the continuous dependence of the solutions on initial conditions and the existence and uniqueness of extremal solutions to a new class of fractional differential equations involving two fractional derivatives in the sense of Caputo fractional derivative with respect to another function $ \Phi $. Firstly, using the generalized Laplace transform method, we give an explicit formula of the solutions to the aforementioned linear problem which can be regarded as a novelty item. Secondly, by the implementation of the $ \Phi $-fractional Gronwall inequality, we analyze some properties such as estimates and continuous dependence of the solutions on initial conditions. Thirdly, with the help of features of the Mittag-Leffler functions (MLFs), we build a new comparison principle for the corresponding linear equation. This outcome plays a vital role in the forthcoming analysis of this paper especially when we combine it with the monotone iterative technique alongside facet with the method of upper and lower solutions to get the extremal solutions for the analyzed problem. Lastly, we present some examples to support the validity of our main results.



    加载中


    [1] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [2] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, London: Imperial College Press, 2010.
    [3] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [4] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [6] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [7] R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [8] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [9] J. G. Liu, X. J. Yang, Y. Y. Feng, P. Cui, New fractional derivative with sigmoid function as the kernel and its models, Chinese J. Phys., 68 (2020), 533–541. https://doi.org/10.1016/j.cjph.2020.10.011 doi: 10.1016/j.cjph.2020.10.011
    [10] J. Vanterler da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [11] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Boston: Pitman, 1985.
    [12] J. J. Nieto, An abstract monotone iterative technique, Nonlinear Anal., 28 (1997), 1923–1933. https://doi.org/10.1016/S0362-546X(97)89710-6 doi: 10.1016/S0362-546X(97)89710-6
    [13] M. Al-Refai, M. A. Hajji, Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Anal., 74 (2011), 3531–3539. https://doi.org/10.1016/j.na.2011.03.006 doi: 10.1016/j.na.2011.03.006
    [14] Z. Baitiche, C. Derbazi1, G. T. Wang, Monotone iterative method for nonlinear fractional $p$-Laplacian differential equation in terms of $\psi$-Caputo fractional derivative equipped with a new class of nonlinear boundary conditions, Math. Method. Appl. Sci., 45 (2022), 967–976. https://doi.org/10.1002/mma.7826 doi: 10.1002/mma.7826
    [15] C. R. Chen, M. Bohner, B. G. Jia, Method of upper and lower solutions for nonlinear Caputo fractional difference equations and its applications, Fract. Calc. Appl. Anal., 22 (2019), 1307–1320. https://doi.org/10.1515/fca-2019-0069 doi: 10.1515/fca-2019-0069
    [16] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with $\psi$-Caputo derivative via monotone iterative technique, Axioms, 9 (2020), 1–13. https://doi.org/10.3390/axioms9020057 doi: 10.3390/axioms9020057
    [17] C. Derbazi, Z. Baitiche, A. Zada, Existence and uniqueness of positive solutions for fractional relaxation equation in terms of $\psi$-Caputo fractional derivative, Int. J. Nonlinear Sci. Numer. Simul., 2021. https://doi.org/10.1515/ijnsns-2020-0228 doi: 10.1515/ijnsns-2020-0228
    [18] K. D. Kucche, A. D. Mali, Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative, Comput. Appl. Math., 39 (2020), 1–33. https://doi.org/10.1007/s40314-019-1004-4 doi: 10.1007/s40314-019-1004-4
    [19] G. T. Wang, W. Sudsutad, L. H. Zhang, J. Tariboon, Monotone iterative technique for a nonlinear fractional $q$-difference equation of Caputo type, Adv. Differ. Equ., 2016 (2016), 1–11. https://doi.org/10.1186/s13662-016-0938-8 doi: 10.1186/s13662-016-0938-8
    [20] S. Q. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71 (2009), 2087–2093. https://doi.org/10.1016/j.na.2009.01.043 doi: 10.1016/j.na.2009.01.043
    [21] S. Peng, J. R. Wang, Existence and Ulam-Hyers stability of ODEs involving two Caputo fractional derivatives, Electron. J. Qual. Theory Differ. Equ., 2015, 1–16. https://doi.org/10.14232/ejqtde.2015.1.52 doi: 10.14232/ejqtde.2015.1.52
    [22] S. Peng, J. R. Wang, Cauchy problem for nonlinear fractional differential equations with positive constant coefficient, J. Appl. Math. Comput., 51 (2016), 341–351. https://doi.org/10.1007/s12190-015-0908-4 doi: 10.1007/s12190-015-0908-4
    [23] S. Tate, H. T. Dinde, Some theorems on Cauchy problem for nonlinear fractional differential equations with positive constant coefficient, Mediterr. J. Math, 14 (2017), 1–17. https://doi.org/10.1007/s00009-017-0886-x doi: 10.1007/s00009-017-0886-x
    [24] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin, Heidelberg: Springer, 2014.
    [25] Z. L. Wei, Q. D. Li, J. L. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), 260–272. https://doi.org/10.1016/j.jmaa.2010.01.023 doi: 10.1016/j.jmaa.2010.01.023
    [26] J. Vanterler da C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, arXiv Preprint, 2017. https://doi.org/10.48550/arXiv.1709.03634
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1454) PDF downloads(93) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog