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1. Introduction

For the last few years, the field of fractional calculus has become a powerful tool to support
mathematical modeling with several successful results. Moreover, fractional differential equations
have been used to model many physical, biological and engineering problems (see [1–4]).

As a result of the continuous develepment in the theory of the fractional calculus, a variety of
definitions have appeared in the literature. Some famous definitions are those given by Riemann and
Liouville, Caputo, Hadamard, and so on. For instance, see the textbook of Kilbas [5]. A more
generalized type of fractional operators that appears in the literature is the fractional derivative of a
function by another function. Details and properties of this class of fractional operators can be found
in [6–10]. On the other hand, most of the time it is a hard task to search and compute the exact
solution of nonlinear FDEs. One possible way to achieve this purpose is to apply the monotone
iterative technique [11, 12] alongside facet with the method of upper and lower solutions. In addition,
another interesting and fascinating feature of this method is that not only it guarantees the existence of
extreme solutions, but it is also an effective method for constructing two explicit monotone iterative
sequences that converge to the extremal solutions in a region generated by the upper and lower
solutions. The readers can find more details about the utility of this technique as well as its
significance in tackling nonlinear FDEs in a series of papers [13–20]. However, to the best of the
authors’ observation, the aforesaid method is very rarely used for nonlinear FDEs involving two
Φ-Caputo fractional derivatives.

Motivated by the above mentioned reasons, in this manuscript, we investigate some qualitative
properties of solutions such as the estimate of the solutions, the continuous dependence of the solutions
on initial conditions as well as the existence and uniqueness of extremal solutions for the following
problem: 

cDµ;Φ
a+ z(`) + ωcDκ;Φa+ z(`) = F(`, z(`)), ` ∈ ∆ := [a, b],

z(a) = za,
(1.1)

where cDµ;Φ
a+ and cDκ;Φa+ denote the Φ-Caputo fractional derivatives, with the orders µ and κ respectively

such that 0 < κ < µ ≤ 1, ω > 0, za ∈ R and F ∈ C(∆ × R,R).
The core contribution of this research work is summarized as follows:

• Unlike previous studies, our suggested model (1.1) includes a more generalized fractional
derivative that combines various traditional fractional derivatives.
• By coupling the Φ-Laplace transform method and the properties of Mittag-Leffler functions an

explicit formula of the solutions to the aforementioned linear problem is given. At the same
time, based on this new formula we build a new comparison result which will be used in the
forthcoming analysis.
• Based on the Φ-fractional Gronwall inequality, the monotone iterative technique associated with

the method of upper and lower solutions and under some reasonable assumptions on the source
function F of the considered problem, we have analyzed some qualitative properties of solutions
such as the estimate of the solutions, the continuous dependence of the solutions on initial
conditions as well as the existence and uniqueness of extremal solutions.
• The results of our techniques show that they are very effective and simple to use. Moreover, our

findings are generalizations and partial continuation of some results obtained in [16, 17, 21–23].
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An outline of the present work is as follows. Section 2 is devoted to some preliminary results that
are useful in the sequel. In Section 3, we discuss some qualitative properties of solutions such as the
estimate of the solutions, the continuous dependence of the solutions on initial conditions as well as
the uniqueness of solutions for the problem (1.1). Section 4 is devoted to studying the existence and
uniqueness of extremal solutions for problem (1.1). To prove this, we use the monotone iterative
technique together with the technique of upper and lower solutions. To show the applicability and
consistency of the method under consideration, some examples are given in Section 5. For all
computational work, MATLAB software is used. The paper closes with a brief conclusion and some
possible future directions of research.

2. Preliminaries

In the current section, we state some basic concepts of fractional calculus related to our work.
Let ∆ = [a, b], 0 ≤ a < b < ∞ be a finite interval and Φ : ∆ → R be an increasing differentiable

function such that Φ′(`) , 0 for all ` ∈ ∆.

Definition 2.1. [5, 6] The RL fractional integral of order µ > 0 for an integrable function z : ∆ → R

with respect to Φ is described by

Iµ;Φ
a+ z(`) =

∫ `

a

Φ′(ρ)(Φ(`) − Φ(ρ))µ−1

Γ(µ)
z(ρ)dρ,

where Γ(µ) =
∫ +∞

0
`µ−1e−`d`, µ > 0 is called the Gamma function.

Definition 2.2. [6] Let Φ, z ∈ Cn(∆,R). The Caputo fractional derivative of z of order n − 1 < µ < n
with respect to Φ is defined by

cDµ;Φ
a+ z(`) = In−µ;Φ

a+ z
[n]
Φ

(`),

where n = [µ] + 1 for µ < N, n = µ for µ ∈ N, and

z
[n]
Φ

(`) =

 d
d`

Φ′(`)

n

z(`).

From the above definition, it is clear that

cDµ;Φ
a+ z(`) =


∫ `

a

Φ′(ρ)(Φ(`) − Φ(ρ))n−µ−1

Γ(n − µ)
z

[n]
Φ

(ρ)dρ, µ < N,

z
[n]
Φ

(`), µ ∈ N.

Some basic properties of the Φ-fractional operators are listed in the following lemma.

Lemma 2.1. [6] Let µ, κ > 0 and z ∈ C(∆,R). Then for each ` ∈ ∆,

(i) cDµ;Φ
a+ I

µ;Φ
a+ z(`) = z(`),

(ii) Iµ;Φ
a+

cDµ;Φ
a+ z(`) = z(`) − z(a), for 0 < µ ≤ 1,

(iii) Iµ;Φ
a+ (Φ(`) − Φ(a))κ−1 =

Γ(κ)
Γ(κ+µ) (Φ(`) − Φ(a))κ+µ−1,
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(iv) cDµ;Φ
a+ (Φ(`) − Φ(a))κ−1 =

Γ(κ)
Γ(κ−µ) (Φ(`) − Φ(a))κ−µ−1,

(v) cDµ;Φ
a+ (Φ(`) − Φ(a))k = 0, for all k ∈ {0, . . . , n − 1}, n ∈ N.

Definition 2.3. [24] For p, q > 0 and $ ∈ R, the Mittag-Leffler functions (MLFs) of one and two
parameters are respectively given by

Ep($) =

∞∑
k=0

$k

Γ(pk + 1)
,

Ep,q($) =

∞∑
k=0

$k

Γ(pk + q)
.

(2.1)

Clearly, Ep,1($) = Ep($).

Lemma 2.2. [24,25] Let p ∈ (0, 1), q > p be arbitrary and $ ∈ R. The functions Ep, Ep,p and Ep,q are
nonnegative and have the following properties:

(i) Ep($) ≤ 1, Ep,q($) ≤ 1
Γ(q) , for any $ < 0,

(ii) Ep,q($) = $Ep,p+q($) + 1
Γ(q) , for p, q > 0, $ ∈ R.

Definition 2.4. [8] A function u : [a,∞) → R is said to be of Φ(`)-exponential order if there exist
non-negative constants M, c, b such that

|u(`)| ≤ Mec(Φ(`)−Φ(a)),

for ` ≥ b.

Definition 2.5. [8] Let z,Φ : [a,∞) → R be real valued functions such that Φ(`) is continuous and
Φ′(`) > 0 on [a,∞). The generalized Laplace transform of z is denoted by

LΦ

{
z(`)

}
=

∫ ∞

a
e−λ(Φ(`)−Φ(a))

z(`)Φ′(`) d`, (2.2)

for all λ > 0 provided that the integral in (2.2) exists.

Definition 2.6. [8] Let u and v be two piecewise continuous functions on [a, b] and of Φ(`)-exponential
order. The generalized convolution of u and v is defined by

(u ∗Φ v)(`) =

∫ `

a
Φ′(ρ)u(ρ)v

(
Φ−1(Φ(`) + Φ(a) − Φ(ρ)

))
dρ.

Lemma 2.3. [8] Let u and v be two piecewise continuous functions on [a, b] and of Φ(`)-exponential
order. Then

LΦ

{
u ∗Φ v

}
= LΦ

{
u
}
LΦ

{
v
}
.

In the following lemma, we present the generalized Laplace transforms of some elementary
functions as well as the generalized Laplace transforms of the generalized fractional integrals and
derivatives.
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Lemma 2.4. [8] The following properties are satisfied:

(i) LΦ

{
1
}

= 1
λ
, where λ > 0,

(ii) LΦ

{
(Φ(`) − Φ(a))r−1} =

Γ(r)
λr , where r where λ > 0,

(iii) LΦ

{
Ep

(
±ω(Φ(`) − Φ(a))p)} = λp−1

λp∓ω
, for p > 0 and

∣∣∣ ω
λp

∣∣∣ < 1,

(iv) LΦ

{
(Φ(`) − Φ(a))q−1Ep,q

(
±ω(Φ(`) − Φ(a))p)} = λp−q

λp∓ω
, where p > 0 and

∣∣∣ ω
λp

∣∣∣ < 1,

(v) LΦ

{
Iµ;Φ
a+ z(`)

}
=
LΦ{z(`)}
λµ

, for µ, λ > 0,

(vi) LΦ

{cDµ;Φ
a+ z(`)

}
= λµLΦ

{
z(`)

}
− λµ−1z(a), for 0 < µ ≤ 1 and λ > 0.

Lemma 2.5. For a given H ∈ C(∆,R), 0 < κ < µ ≤ 1 and ω > 0, the linear fractional initial value
problem 

cDµ;Φ
a+ z(`) + ω cDκ;Φa+ z(`) = H(`), ` ∈ ∆ := [a, b],

z(a) = za,
(2.3)

has a unique solution given explicitly by

z(`) = za +

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1Eµ−κ,µ

(
−ω(Φ(`) − Φ(ρ))µ−κ

)
H(ρ)dρ. (2.4)

Proof. Applying the generalized Laplace transform to both sides of Eq (2.3) and then using Lemma 2.4,
one gets

λµLΦ

{
z(`)

}
− λµ−1

z(a) + ωλκLΦ

{
z(`)

}
− ωλκ−1

z(a) = LΦ

{
H(`)

}
.

So,

LΦ

{
z(`)

}
= ω

λ−1

λµ−κ + ω
za +

λµ−κ−1

λµ−κ + ω
za +

λ−κ

λµ−κ + ω
LΦ

{
H(`)

}
= ωLΦ

{
(Φ(`) − Φ(a))µ−κEµ−κ,µ−κ+1

(
−ω(Φ(`) − Φ(a))µ−κ

)}
za

+ LΦ

{
Eµ−κ

(
−ω(Φ(`) − Φ(a))µ−κ

)}
za

+ LΦ

{
(Φ(`) − Φ(a))µ−1Eµ−κ,µ

(
−ω(Φ(`) − Φ(a))µ−κ

)}
LΦ

{
H(`)

}
.

Taking the inverse generalized Laplace transform of both sides of the last expression, we get

z(`) =
[
Eµ−κ

(
−ω(Φ(`) − Φ(a))µ−κ

)
+ ω(Φ(`) − Φ(a))µ−κEµ−κ,µ−κ+1

(
−ω(Φ(`) − Φ(a))µ−κ

)]
za

+ H(`) ∗Φ (Φ(`) − Φ(a))µ−1Eµ−κ,µ
(
−ω(Φ(`) − Φ(a))µ−κ

)
= za +

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1Eµ−κ,µ

(
−ω(Φ(`) − Φ(ρ))µ−κ

)
H(ρ)dρ.

�
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Lemma 2.6. (Comparison result) Let κ, µ ∈ (0, 1] such that κ < µ and ω > 0. If γ ∈ C(∆,R) satisfying

cDµ;Φ
a+ γ(`), cDκ;Φa+ γ(`) ∈ C(∆,R)

and 
cDµ;Φ

a+ γ(`) + ω cDκ;Φa+ γ(`) ≥ 0, ` ∈ (a, b],

γ(a) ≥ 0,

then γ(`) ≥ 0 for all ` ∈ ∆.

Proof. Let
H(`) = cDµ;Φ

a+ γ(`) + ω cDκ;Φa+ γ(`) ≥ 0,

γ(a) = za ≥ 0 in Lemma 2.5. Then it follows by Eq (2.4) and Lemma 2.2 that the conclusion of
Lemma 2.6 holds. �

The following lemma is a generalization of Gronwall’s inequality.

Lemma 2.7. [26] Let ∆ be the domain of the nonnegative integrable functions u, v. Also, w be a
continuous, nonnegative and nondecreasing function defined on ∆ and Φ ∈ C1(∆,R+) be an increasing
function with the restriction that Φ′(`) , 0, for all ` ∈ ∆. If

u(`) ≤ v(`) + w(`)
∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1u(ρ)dρ, ` ∈ ∆.

Then

u(`) ≤ v(`) +

∫ `

a

∞∑
n=0

(w(`)Γ(µ))n

Γ(nµ)
Φ′(ρ)(Φ(`) − Φ(ρ))nµ−1v(ρ)dρ, ` ∈ ∆.

Corollary 2.1. [26] Under the conditions of Lemma 2.7, let v be a nondecreasing function on ∆. Then
we get

u(`) ≤ v(`)Eµ
(
Γ(µ)w(`)

(
Φ(`) − Φ(a)

)µ)
, ` ∈ ∆. (2.5)

Lemma 2.8. Assume that {wn} is a family of continuous functions on ∆, for each n > 0 which satisfies
cDµ;Φ

a+ wn(`) + ωcDκ;Φa+ wn(`) = F(`,wn(`)), ` ∈ ∆,

wn(a) = wa,
(2.6)

and |F(`,wn(`))| ≤ L (L > 0 independent of n) for each ` ∈ ∆. Then, the family {wn} is equicontinuous
on ∆.

Proof. According to Lemma 2.5, the integral representation of problem (2.6) is given by

wn(`) = wa +

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1

× Eµ−κ,µ
(
−ω(Φ(`) − Φ(ρ))µ−κ

)
F(ρ,wn(ρ))dρ.

(2.7)
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Let now any `1, `2 ∈ ∆ with a < `1 < `2 < b. Then from (2.7) and Lemma 2.2 we have

|wn(`2) − wn(`1)|

≤

∫ `1

a

Φ′(ρ)
[
(Φ(`1) − Φ(ρ))µ−1 − (Φ(`2) − Φ(ρ))µ−1

]
Γ(µ)

|F(ρ,wn(ρ)|dρ

+

∫ `2

`1

Φ′(ρ)(Φ(`2) − Φ(ρ))µ−1

Γ(µ)
|F(ρ,wn(ρ)| dρ

≤
L

Γ(µ + 1)
[(Φ(`1) − Φ(a))µ + 2(Φ(`2) − Φ(`1))µ − (Φ(`2) − Φ(a))µ]

≤
2L

Γ(µ + 1)
(Φ(`2) − Φ(`1))µ.

As `2 → `1, the right-hand side of the above inequality tends to zero independently of {wn}. Hence, the
family {wn} is equicontinuous on ∆. �

3. Some qualitative properties of solutions for problem (1.1)

In this section, we obtain some qualitative properties of solutions for problem (1.1). To do this, we
apply the Φ-fractional Gronwall inequality.

First of all, we present the following theorem that contains the estimates of the solutions of
problem (1.1).

Theorem 3.1. Let F : ∆ × R→ R be a continuous function satisfies the following condition:

(H1) There exists a constant L > 0 such that

|F(`, y) − F(`, x)| ≤ L|y − x|,

for all x, y ∈ R and ` ∈ ∆.

If z ∈ C(∆,R) is any solution of the problem (1.1), then

|z(`)| ≤
(
|za| +

LF∗ (Φ(b) − Φ(a))µ

Γ(µ + 1)

)
Eµ

(
L
(
Φ(b) − Φ(a)

)µ)
, ` ∈ ∆,

where F∗ = sup`∈∆ |F(`, 0)|.

Proof. Let z ∈ C(∆,R) be the solution of the problem (1.1), then by Lemma 2.5, the solution z can be
represented as follow:

z(`) = za +

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1Eµ−κ,µ

(
−ω(Φ(`) − Φ(ρ))µ−κ

)
F(ρ, z(ρ))dρ.

From Lemma 2.2 and the hypothesis (H1) we can get

|z(`)| ≤ |za| +
LF∗ (Φ(`) − Φ(a))µ

Γ(µ + 1)
+
L

Γ(µ)

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1|z(ρ)|dρ.
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Using Corollary 2.1, we conclude that

|z(`)| ≤
(
|za| +

LF∗ (Φ(b) − Φ(a))µ

Γ(µ + 1)

)
Eµ

(
L
(
Φ(b) − Φ(a)

)µ)
, ` ∈ ∆.

In the following theorem, we present the dependence of solution z on the initial values.

Theorem 3.2. Let F : ∆×R→ R be a continuous function which satisfies the hypothesis (H1). Suppose
z and z̄ are the solutions of the problem

cDµ;Φ
a+ z(`) + ωcDκ;Φa+ z(`) = F(`, z(`)), ` ∈ ∆, (3.1)

corrosponding to z(a) = za and z̄(a) = z̄a respectively. Then

‖z − z̄‖ ≤ Eµ
(
L
(
Φ(b) − Φ(a)

)µ)
|za − z̄a|. (3.2)

Proof. Let z, z̄ ∈ C(∆,R) be the solutions of the problem (3.1) corresponding to z(a) = za and z̄(a) = z̄a,

respectively. Then by Lemma 2.5, solutions z and z̄ can be represented as follows:z(`) = za +
∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1Eµ−κ,µ

(
−ω(Φ(`) − Φ(ρ))µ−κ

)
F(ρ, z(ρ))dρ,

z̄(`) = z̄a +
∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1Eµ−κ,µ

(
−ω(Φ(`) − Φ(ρ))µ−κ

)
F(ρ, z̄(ρ))dρ.

From Lemma 2.2 and the hypothesis (H1) we get

|z(`) − z̄(`)| ≤ |za − z̄a| +
L

Γ(µ)

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1|z(ρ) − z̄(ρ)|dρ.

Using Corollary 2.1, we conclude that

|z(`) − z̄(`)| ≤ |za − z̄a|Eµ
(
L
(
Φ(b) − Φ(a)

)µ)
, ` ∈ ∆.

Taking supremum over ` ∈ ∆, we obtain

‖z − z̄‖ ≤ |za − z̄a|Eµ
(
L
(
Φ(b) − Φ(a)

)µ)
.

Remark 3.1. The inequality (3.2) exhibits continuous dependence of solutions of the problem (1.1) on
initial conditions as well as it gives the uniqueness. The uniqueness follows by putting za = z̄a in (3.2).

4. Monotone iterative technique for problem (1.1)

The main theme of this section is to discuss the existence and uniqueness of extremal solutions for
the problem (1.1). First of all, we give the definitions of lower and upper solutions of the problem (1.1).

Definition 4.1. A function z ∈ C(∆,R) is called a lower solution of (1.1), if it satisfies
cDµ;Φ

a+ z + ωcDκ;Φa+ z(`) ≤ F(`, z(`)), ` ∈ ∆,

z(a) ≤ za.
(4.1)

If all inequalities of (4.1) are inverted, we say that z is an upper solution of the problem (1.1).

AIMS Mathematics Volume 7, Issue 6, 9894–9910.
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In order to get the existence and uniqueness of the extremal solutions for the initial value
problem (1.1), we give the following assumptions:

(H2) There exist z0, z̃0 ∈ C(∆,R) such that z0 and z̃0 are lower and upper solutions of problem (1.1),
respectively, with z0(`) ≤ z̃0(`) for ` ∈ ∆.

(H3) F is increasing with respect to the second variable, i.e.

F(`, x) ≤ F(`, y),

for any ` ∈ ∆ and
z0(`) ≤ x ≤ y ≤ z̃0(`).

(H4) There exists a constantM ≥ 0 such that

0 ≤ F(`, y) − F(`, x) ≤ M(y − x),

with
z0(`) ≤ x ≤ y ≤ z̃0(`),

for all ` ∈ ∆.

Theorem 4.1. Because of (H2), (H3) and that the function F : ∆×R→ R is continuous, then there exist
monotone iterative sequences {zn} and {z̃n} which converge uniformly on ∆ to the extremal solutions of
the problem (1.1) in the sector [z0, z̃0], where

[z0, z̃0] =
{
z ∈ C(∆,R) : z0(`) ≤ z(`) ≤ z̃0(`), ` ∈ ∆

}
.

Furthermore, if (H4) holds, problem (1.1) has a unique solution in [z0, z̃0].

Proof. For any z0, z̃0 ∈ C(∆,R), we define
cDµ;Φ

a+ zn+1(`) + ω cDκ;Φa+ zn+1(`) = F(`, zn(`)), ` ∈ ∆,

zn+1(a) = za,
(4.2)

and 
cDµ;Φ

a+ z̃n+1(`) + ω cDκ;Φa+ z̃n+1(`) = F(`, z̃n(`)), ` ∈ ∆,

z̃n+1(a) = za.
(4.3)

By Lemma 2.5, we know that problems (4.2) and (4.3) have unique solutions zn(`) and z̃n(`),
respectively. These solutions are expressed as

zn+1(`) = za +

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1 × Eµ−κ,µ

(
−ω(Φ(`) − Φ(ρ))µ−κ

)
F(ρ, zn(ρ))dρ (4.4)

and

z̃n+1(`) = za +

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1 × Eµ−κ,µ

(
−ω(Φ(`) − Φ(ρ))µ−κ

)
F(ρ, z̃n(ρ))dρ. (4.5)
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Firstly, let us prove that

z0(`) ≤ z1(`) ≤ z̃1(`) ≤ z̃0(`), ` ∈ ∆.

To this end, set
γ(`) = z1(`) − z0(`).

From (4.2) and Definition 4.1, we obtain

cDµ;Φ
a+ γ(`) + ω cDκ;Φa+ γ(`) =cDµ;Φ

a+ z1(`) + ω cDκ;Φa+ z1(`) −
(

cDµ;Φ
a+ z0(`) + ω cDκ;Φa+ z0(`)

)
=F(`, z0(`)) −

(
cDµ;Φ

a+ z0(`) + ω cDκ;Φa+ z0(`)
)

≥0

and γ(a) = 0. Invoking Lemma 2.6, we get γ(`) ≥ 0 for any ` ∈ ∆. Thus,

z0(`) ≤ z1(`),

for ` ∈ ∆. As the same method, it can be showed that z̃1(`) ≤ z̃0(`), for all ` ∈ ∆. Now, let

γ(`) = z̃1(`) − z1(`).

Using (4.2) and (4.3) together with assumptions (H2) and (H3), we get

cDµ;Φ
a+ γ(`) + ω cDκ;Φa+ γ(`) = F(`, z̃0(`)) − F(`, z0(`)) ≥ 0

and γ(a) = 0. Using Lemma 2.6, we arrive at z1(`) ≤ z̃1(`), for each ` ∈ ∆.
Secondly, we need to show that z1 and z̃1 are the lower and upper solutions of problem (1.1),

respectively. Taking into account that F is increasing function with respect to the second variable,
we get 

cDµ;Φ
a+ z1(`) + ω cDκ;Φa+ z1(`) = F(`, z0(`)) ≤ F(`, z1(`)),

z1(a) = za

and 
cDµ;Φ

a+ z̃1(`) + ω cDκ;Φa+ z̃1(`) = F(`, z̃0(`)) ≥ F(`, z̃1(`)),

z̃1(a) = za.

This means that z1 and z̃1 are the lower and upper solutions of problem (1.1), respectively. By the above
arguments and mathematical induction, we can show that the sequences zn and z̃n, (n ≥ 1) are lower
and upper solutions of (1.1), respectively, and satisfy the following relation

z0(`) ≤ z1(`) ≤ · · · ≤ zn(`) ≤ · · · ≤ z̃n(`) ≤ · · · ≤ z̃1(`) ≤ z̃0(`), (4.6)

for ` ∈ ∆.
Thirdly, we show that the sequences {zn} and {z̃n} converge uniformly to their limit functions z∗ and

z̃∗ respectively. In fact, it follows from (4.6), that the sequences {zn} and {z̃n} are uniformly bounded
on ∆. Moreover, from Lemma 2.8, the sequences {zn} and {z̃n} are equicontinuous on ∆. Hence by
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Arzelà-Ascoli’s Theorem, there exist subsequences {znk} and {z̃nk} which converge uniformly to z∗ and
z̃∗ respectively on ∆. This together with the monotonicity of sequences {zn} and {z̃n} implies

lim
n→∞
zn(`) = z∗(`),

lim
n→∞
z̃n(`) = z̃∗(`),

uniformly on ` ∈ ∆ and the limit functions z∗, z̃∗ satisfy problem (1.1).
Lastly, we prove the minimal and maximal property of z∗ and z̃∗ on [z0, z̃0]. To do this, let z ∈ [z0, z̃0]

be any solution of (1.1). Suppose for some n ∈ N∗ that

zn(`) ≤ z(`) ≤ z̃n(`), ` ∈ ∆. (4.7)

Setting

γ(`) = z(`) − zn+1(`).

It follows that
cDµ;Φ

a+ γ(`) + ω cDκ;Φa+ γ(`) = F(`, z(`)) − F(`, zn(`)) ≥ 0.

Furthermore, γ(a) = 0. Thus, in light of Lemma 2.6, we have the inequality γ(`) ≥ 0, ` ∈ ∆, and then
zn+1(`) ≤ z(`), ` ∈ ∆. Analogously, it can be obtained that z(`) ≤ z̃n+1(`), ` ∈ ∆. So, from mathematical
induction, it follows that the relation (4.7) holds on ∆ for all n ∈ N. Taking the limit as n→ ∞ on both
sides of (4.7), we get

z
∗(`) ≤ z(`) ≤ z̃∗(`), ` ∈ ∆.

This means that z∗, z̃∗ are the extremal solutions of (1.1) in [z0, z̃0]. To close the proof it remains to
show that the problem (1.1) has a unique solution. In fact, by the foregoing arguments, we know that
z∗, z̃∗ are the extremal solutions of the problem (1.1) in [z0, z̃0] and z∗(`) ≤ z̃∗(`), ` ∈ ∆. So, it is enough
to prove that z∗(`) ≥ z̃∗(`), for ` ∈ ∆. For this purpose, let

u(`) = z̃∗(`) − z∗(`),

for ` ∈ ∆, then by (H4) and Lemmas 2.2, 2.5, we get

0 ≤ u(`) = z̃∗(`) − z∗(`)

=

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1Eµ−κ,µ

(
−ω(Φ(`) − Φ(ρ))µ−κ

)
×

(
F(ρ, z̃∗(ρ)) − F(ρ, z∗(ρ))

)
dρ,

≤
M

Γ(µ)

∫ `

a
Φ′(ρ)(Φ(`) − Φ(ρ))µ−1u(ρ)dρ.

By the Gronwall’s inequality (Lemma 2.7), we get u(`) ≡ 0 on ∆. Hence, z∗ ≡ z̃∗ is the unique
solution of the problem (1.1). In addition, the unique solution can be obtained by the monotone iterative
procedures (4.2) and (4.3) starting from z0 or z̃0. Thus, the proof of Theorem 4.1 is finished. �
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5. Numerical results

Here, we present some applications for our analysis.

Example 5.1. Let us consider problem (1.1) with specific data:

µ = 0.8, κ = 0.5, ω =
2
√
π
, a = 0, b = 1, z(0) = 1. (5.1)

In order to illustrate Theorem 4.1, we take

Φ(`) = σ(`),

where σ(`) is the Sigmoid function [9] which can be expressed as the following form:

σ(`) =
1

1 + e−`
, (5.2)

and a convenience of the Sigmoid function is its derivative:

σ′(`) = σ(`)(1 − σ(`)).

Taking also F : [0, 1] × R→ R given by

F(`, z(`)) = (σ(`) − 0.5) ez(`)−3, (5.3)

for ` ∈ [0, 1]. Clearly, F is continuous. Moreover, it is easy to verify that z0(`) = 0, z̃0(`) = 1 + ` are
lower and upper solutions of (1.1), respectively and

z0(`) ≤ z̃0(`),

for all ` ∈ [0, 1].
On the other hand, from the expression of F, one can see that F is increasing with respect to the

second variable. Thus, by Theorem 4.1 the problem (1.1) with the data (5.1)–(5.3) has extremal
solutions in [z0, z̃0], which can be approximated by the following iterative sequences:

z0(`) = 0,

zn+1(`) = 1 +

∫ `

0
σ(ρ)(1 − σ(ρ))

E0.3,0.8

(
− 2
√
π
(σ(`) − σ(ρ))µ−κ

)
(σ(`) − σ(ρ))0.2

×
(
(σ(ρ) − 0.5)ezn(ρ)−3

)
dρ

(5.4)

and 

z̃0(`) = 1 + `,

z̃n+1(`) = 1 +

∫ `

0
σ(ρ)(1 − σ(ρ))

E0.3,0.8

(
− 2
√
π
(σ(`) − σ(ρ))µ−κ

)
(σ(`) − σ(ρ))0.2

×
(
(σ(ρ) − 0.5)ez̃n(ρ)−3

)
dρ.

(5.5)
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It should be noted at this stage that the exact calculation of the integrals of Eqs (5.4) and (5.5) is far
from trivial due to the complicated integrands. Therefore, we implemented the well-known composite
trapezoidal rule to these integrals. We first subdivide the interval I := [0, 1] into N subintervals with
h = 1/N, ` j = ρ j = jh for j = 0, 1, · · · ,N. Then, at each node ` = li, we applied trapezoidal’s
quadrature rule to approximate the integrals which is a second-order accurate. Therefore, global error
is O(h2) as the step size h tends to zero. We used h = 0.05 in the below examples.

The graphs of zn and z̃n for n = 0, 1, 2 are plotted in Figure 1.

``

`

(n = 0)

(n = 1) (n = 2)

Figure 1. Graphs of lower solutions zn (solid) and upper solutions z̃n (dashed) for Example 1.

It is clearly observed that the sequences zn and z̃n converge uniformly and very rapidly. To measure
the bound of the error at each iteration n, we use the L2-norm defined as

En = ‖z̃n − zn‖
2 =

∫ 1

0
(z̃n(`) − zn(`))2d`.

Table 1 shows the error bounds En for n = 0, 1, 2, 3. This table clearly states that both lower and upper
solutions converges rapidly to the exact solution with almost negligible error after only three iterations.

Table 1. Error bounds En (n = 0, 1, 2, 3) for Example 1.

n 0 1 2 3
En 2.33333 7.46215 × 10−6 2.0401 × 10−11 4.01309 × 10−17

Example 5.2. Consider the following problem:
cD0.9

0+ z(`) + Γ(1.6) cD0.4
0+ z(`) = ` sin z(`),

z(0) = 0.5,
(5.6)
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for ` ∈ [0, 1], here,

µ = 0.9, κ = 0.4, ω = Γ(1.6), a = 0, b = 1, Φ(`) = `,

and
F(`, z(`)) = ` sin z(`),

for all ` ∈ [0, 1].

Obviously, F is continuous. On the one hand, it is not difficult to verify that the choices z0(`) = 0.5
and z̃0(`) = 0.5 + ` are lower and upper solutions of (5.6), respectively, with z0(`) ≤ z̃0(`). Moreover,
for all ` ∈ [0, 1] and

z0(`) ≤ x(`) ≤ y(`) ≤ z̃0(`),

one has
0 ≤ F(`, y(`)) − F(`, x(`)) ≤ (y(`) − x(`)).

Thus, all the assumptions of Theorem 4.1 hold true. As a result, Theorem 4.1 guarantees that the
problem (5.6) has a unique solution, which can be obtained by the following iterative scheme:

zn+1(`) =0.5 +

∫ `

0

E0.5,0.9

(
−Γ(1.6)

√
` − ρ

)
(` − ρ)0.1 ρ sin zn(ρ)dρ,

starting from z0(`) = 0.5 or z̃0(`) = 0.5 + `.
Applying the same algorithm used in the previous example, we may state the same conclusion that

the two sequences zn and z̃n converge uniformly and very rapidly to the exact solution as shown in
Figure 2 and supported by the error analysis in Table 2.

``

`

(n = 0)

(n = 2) (n = 4)

Figure 2. Graphs of lower solutions zn (solid) and upper solutions z̃n (dashed) for Example 2.
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Table 2. Error bounds En (n = 0, 1, 2, 3, 4) for Example 2.

n 0 1 2 3 4
En 0.33333 4.22221 × 10−3 5.94414 × 10−5 5.98584 × 10−7 4.38003 × 10−9

6. Conclusions

In this paper, we analyzed some qualitative properties of solutions to a new class of fractional
differential equations involving two fractional derivatives in the sense of Caputo fractional derivative
with respect to a strictly increasing continuous function Φ. As a methodology, we adopted the coupling
of Φ-Laplace transform method, Φ-fractional Gronwall inequality and the monotone iterative technique
along with the method of upper and lower solutions. Lastly, numerical examples are given to confirm
the simplicity and accuracy of the proposed technique. In addition, we gave our findings on a broad
platform that covers a wide class of initial value problems that arise in nonlinear analysis and its
applications. As a future direction of research, it is desirable to apply this technique to other generalized
fractional operators.
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