Research article

Instability of standing waves for a quasi-linear Schrödinger equation in the critical case

  • Received: 23 September 2021 Revised: 19 January 2022 Accepted: 19 January 2022 Published: 15 March 2022
  • MSC : 35F25, 35Q55

  • We consider the following quasi-linear Schrödinger equation.

    $ \begin{align} i\frac{\partial\psi}{\partial t}+\triangle\psi+\psi\triangle|\psi|^2+|\psi|^{p-1}\psi = 0,x\in \mathbb{R}^D, D\geq1, \;\;\;\;\;\;\;\;\;(Q)\end{align} $

    where $ \psi: \mathbb{R}^+\times \mathbb{R}^D\rightarrow \mathbb{C} $ is the wave function, $ p = 3+\frac{4}{D} $. It is known that the set of standing waves is stable for $ 1 < p < 3+\frac{4}{D} $ and it is strongly unstable for $ 3+\frac{4}{D} < p < \frac{3D+2}{D-2} $. In this paper, we prove that the standing waves are strongly unstable for $ p = 3+\frac{4}{D} $. Moreover, a property on the set of the ground states of (Q) is investigated.

    Citation: Xiaoguang Li, Chaohe Zhang. Instability of standing waves for a quasi-linear Schrödinger equation in the critical case[J]. AIMS Mathematics, 2022, 7(6): 9683-9693. doi: 10.3934/math.2022539

    Related Papers:

  • We consider the following quasi-linear Schrödinger equation.

    $ \begin{align} i\frac{\partial\psi}{\partial t}+\triangle\psi+\psi\triangle|\psi|^2+|\psi|^{p-1}\psi = 0,x\in \mathbb{R}^D, D\geq1, \;\;\;\;\;\;\;\;\;(Q)\end{align} $

    where $ \psi: \mathbb{R}^+\times \mathbb{R}^D\rightarrow \mathbb{C} $ is the wave function, $ p = 3+\frac{4}{D} $. It is known that the set of standing waves is stable for $ 1 < p < 3+\frac{4}{D} $ and it is strongly unstable for $ 3+\frac{4}{D} < p < \frac{3D+2}{D-2} $. In this paper, we prove that the standing waves are strongly unstable for $ p = 3+\frac{4}{D} $. Moreover, a property on the set of the ground states of (Q) is investigated.



    加载中


    [1] S. Adachi, T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonlinear Anal.-Theor., 75 (2012), 819–833. https://doi.org/10.1016/j.na.2011.09.015 doi: 10.1016/j.na.2011.09.015
    [2] H. Berestycki, T. Cazenave, Instabilite des etats stationnaires dans les equations de Schrödinger et de Klein-Gordon non linearires, C. R. Acad. Sci. Paris, 293 (1981), 489–492.
    [3] L. Brizhik, A. Eremko, B. Piette, W. J. Zakrzewski, Electron self-trapping in a discrete two-dimensional lattice, Physica D, 159 (2001), 71–90. https://doi.org/10.1016/S0167-2789(01)00332-3 doi: 10.1016/S0167-2789(01)00332-3
    [4] T. Cazenave, Semilinear Schrödinger equations, New York: New York University Courant Institute of Mathematical Sciences, 2003.
    [5] M. Colin, On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension, Commun. Part. Differ. Equ., 27 (2002), 325–354. https://doi.org/10.1081/PDE-120002789 doi: 10.1081/PDE-120002789
    [6] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal.-Theor., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008
    [7] M. Colin, L. Jeanjean, M. Squassina, Stability and instability results for standing waves of quasi–linear Schrödinger equations, Nonlinearity, 23 (2010), 1353–1385. https://doi.org/10.1088/0951-7715/23/6/006 doi: 10.1088/0951-7715/23/6/006
    [8] B. H. Feng, R. P. Chen, Q. X. Wang, Instability of standing waves for the nonlinear Schrödinger–Poisson equation in the $ L^2-$ critical case, J. Dyn. Differ. Equ., 32 (2020), 1357–1370. https://doi.org/10.1007/s10884-019-09779-6 doi: 10.1007/s10884-019-09779-6
    [9] S. Kurihura, Large amplitude quasi–solitons in superfluid film, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262
    [10] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method, Commun. Part. Differ. Equ., 29 (2004), 879–901. https://doi.org/10.1081/PDE-120037335 doi: 10.1081/PDE-120037335
    [11] M. Poppenberg, On the local well posedness of quasi–linear Schrödinger equations in arbitrary space dimension, J. Differ. Equ., 172 (2001), 83–115. https://doi.org/10.1006/jdeq.2000.3853 doi: 10.1006/jdeq.2000.3853
    [12] J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Commun. Part. Differ. Equ., 30 (2005), 1429–1443. https://doi.org/10.1080/03605300500299539 doi: 10.1080/03605300500299539
    [13] X. G. Zhang, J. Q. Jiang, Y. H. Wu, Y. J. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, Appl. Math. Lett., 100 (2020), 106018. https://doi.org/10.1016/j.aml.2019.106018 doi: 10.1016/j.aml.2019.106018
    [14] X. Y. Zeng, Variational problems arising in Bose-Einstein condensation, Doctoral Thesis, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences, 2014.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1373) PDF downloads(83) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog