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Abstract: We consider the following quasi-linear Schrödinger equation.

i
∂ψ

∂t
+ 4ψ + ψ4|ψ|2 + |ψ|p−1ψ = 0, x ∈ RD,D ≥ 1, (Q)

where ψ : R+ × RD → C is the wave function, p = 3 + 4
D . It is known that the set of standing waves is

stable for 1 < p < 3 + 4
D and it is strongly unstable for 3 + 4

D < p < 3D+2
D−2 . In this paper, we prove that

the standing waves are strongly unstable for p = 3 + 4
D . Moreover, a property on the set of the ground

states of (Q) is investigated.
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1. Introduction

This note is concerned with the quasi-linear Schrödinger equation

i
∂ψ

∂t
+ 4ψ + ψ4|ψ|2 + |ψ|p−1ψ = 0, x ∈ RD,D ≥ 1, (1.1)

where ψ : R+ × RD → C is the wave function, 4 is the Laplacian operator on RD, 1 < p < 22∗ − 1
(2∗ = ∞, if D = 1, 2; 2∗ = 2D

D−2 if D ≥ 3). Quasi-linear equations of the form (1.1) come from a
superfluid film equation in plasma physics, which was introduced in [3, 9].

Due to the focusing nature of the power nonlinearity |ψ|p−1ψ in (1.1), there exists a standing wave
solution given by

ψ(t, x) = eiωtu(x),
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where u is a nontrivial solution of the semi-linear elliptic problem{
−4u − u4|u|2 + ωu = |u|p−1u in RD,

u(x)→ 0 as |x| → ∞.
(1.2)

The stability and instability of standing waves of (1.1) has been studied in [7]. Similar to [7], we
introduce the following notations.
Notation.

• ‖ · ‖q and ‖ · ‖Hk denote the norms in Lq := Lq(RD) and Sobolev space Hk(RD) = W1,k(RD),
respectively.
• E(a) denotes the integer part of a.
• The natural working space for (1.2) is XC, defined by

XC := {u ∈ H1(RD) :
∫
|u|2|∇|u||2 < ∞}.

The local and global well-posedness of the Cauchy problem to (1.1) have been studied by
Poppenberg in [11] for smooth initial data, precisely belonging to the space H∞. On the local
well-posedness for the Cauchy problem to (1.1) in Hk, we make the following assumptions.
Assumption (A1). Let D ≥ 1, s = 2E( D

2 )+2. Then, the Cauchy problem for (1.1) is locally well-posed
in H s(RD), that is, for any ψ0 ∈ H s+2(RD) there exists a positive T and a unique solution ψ(t) of (1.1)
with ψ(0, x) = ψ0(x) satisfying

ψ(t) ∈ L∞(0,T ; H s+2(RD)) ∩C([0,T ]; H s(RD)).

Moreover, it has the conservation laws of the mass

‖ψ(t, ·)‖2 = ‖ψ0‖2 (1.3)

and the energy
E(ψ(t)) = E(ψ(0)) (1.4)

for every t ∈ [0,T ), where

E(ψ) :=
1
2

∫
|∇ψ|2 +

1
4

∫
|∇|ψ|2|2 −

1
p + 1

∫
|ψ|p+1. (1.5)

Remark 1.1. In view of Theorem 1.1 in [7], the assumption (A1) is verified provided that
p ∈ (1, 22∗ − 1) is an odd integer or p ∈ (4E( D

2 ) + 9, 22∗ − 1). We also refer the readers to [5] for some
other results on the local well-posedness for the Cauchy problem to (1.1).

It is known that a solution u ∈ XC of (1.2) is essentially a critical point of the variational functional
S ω: XC → R, defined by

S ω(v) =
1
2

∫
|∇v|2 +

1
4

∫
|∇|v|2|2 +

ω

2

∫
|v|2 −

1
p + 1

∫
|v|p+1. (1.6)

The ground states of (1.2) is defined as follows.
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Definition 1.1. Let Xω be the set of the solutions of (1.2); namely,

Xω = {u ∈ XC : S ′ω(u) = 0, u , 0},

and let Gω be the set of the ground states of (1.2); that is

Gω = {v ∈ Xω : S ω(v) ≤ S ω(u),∀u ∈ Xω}.

Remark 1.2. The existence of ground states for (1.2) was proved in [6, 7, 10, 13]. It is shown that Gω
is not empty for any ω > 0 and 1 < p < 22∗−1. When ω is large enough, the uniqueness of the ground
state is studied in [1].

Under the assumption (A1), it is proved in [7] that the standing wave eiωtQω(x) with Qω ∈ Gω is
strongly unstable by blowup for 3 + 4

D < p < 22∗ − 1 and stable in some sense for 1 < p < 3 + 4
D (See

Theorem 3.1 for detail). Hence, the power p = 3 + 4
D is the critical exponent of the nonlinearity for the

stability and instability of standing waves. As we can see, for the critical case p = 3 + 4/D, it is still
unknown whether or not the standing wave of Eq (1.1) is stable.

The main objective of this note is to prove the instability of the standing wave for Eq (1.1) with
p = 3+4/D. Moreover, our argument can give a simpler proof of the instability result for p > 3+4/D,
which has been established in [7]. More precisely, we establish and prove the following theorem.

Theorem 1.2. Assume (A1). Let ω > 0, s = 2E( D
2 ) + 2, 3 + 4

D ≤ p < 22∗ − 1 and Qω ∈ Gω. Then the
standing wave eiωtQω(x) of equation (1.1) is strongly unstable by blowup. More precisely, for all ε > 0,
there exists ψ0 ∈ H s+2(RD) such that ‖ψ0 − Qω‖H1 < ε and the solution ψ(t) of (1.1) with ψ(0) = ψ0

satisfies
lim

t→Tψ0

‖ψ(t)‖H1 = ∞ with Tψ0 < ∞.

Remark 1.3. The assumptions of Theorem 1.2 hold for

p = 7 or p ≥ 9 when D = 1, p = 5, 7, 9 or p ≥ 13 if D = 2,
p = 5, 7, 9 if D = 3 and p = 5 if D = 4.

We note that for the case p = 3 + 4
D , the assumptions of Theorem 1.2 hold if the space dimension is

limited to D = 1, 2.

As in many previous works [2, 8, 12], the arguments of Theorem 1.2 is based upon a minimization
problem related to the ground states which are used to define appropriate invariant sets and to further
derive the blow-up solutions with initial data near the ground states. In [7], to prove the instability of
the standing waves of Eq (1.1) with p ∈ (3+ 4

D , 22∗−1) the authors introduce the minimization problem

inf{S ω(v) : P(v) = 0,N(v) ≤ 0}, (1.7)

where the functionals P(·) and N(·) are defined by (2.4) and (2.5) respectively in the next section. Then,
it is proved for p > 3 + 4

D , the minimization problem (1.7) is equivalent to the minimizing problem

inf{S ω(v) : N(v) = 0}, (1.8)

which has been solved in [10]. However, such an argument fails when p = 3 + 4
D . In the present paper,

to overcome this difficulty, we replace the minimization problem (1.7) with

inf{S ω(v) : P(v) = 0}. (1.9)

By establishing the equivalence between the minimization problems (1.9) and (1.8), we manage to
prove the instability of the standing waves of Eq (1.1) with p ≥ 3 + 4

D .
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2. Proof of Theorem 1.2

In view of the result of [7], we have the following properties on the ground states of (1.2).

Proposition 2.1. [Theorem 1.3 in [7]] For 1 < p < 22∗−1 and ω > 0, Gω is nonempty and any u ∈ Gω
is of the form

u(x) = eiθ|u(x)|, x ∈ RD,

for some θ ∈ S1. In particular, the elements of Gω are unique up to a constant complex phase,
real-valued and non-negative. Furthermore, any real nonnegative ground state u ∈ Gω satisfies the
following properties.

(i) u > 0, in RD,
(ii) u is a radially symmetric decreasing function with respect to some point,

(iii) u ∈ C2(RD),
(iv) for all α ∈ ND with |α| ≤ 2, there exists (cα, δα) ∈ (R∗+)2 such that

|Dαu(x)| ≤ Cαe−δα |x|, for all x ∈ RD.

To prove that a solution blows up in finite time, we need the following virial identities for the
solution of Eq (1.1).

Lemma 2.1. (Lemma 3.2 in [7]) Let ψ0 ∈ H1, |x|2ψ0 ∈ L2 and ψ(t) be the solution of Eq (1.1) with
ψ(0) = ψ0. Then the function J(t) :=

∫
|x|2|ψ|2 is C2 and

J′(t) = 4=
∫

(x · ∇ψ)ψ̄,

J′′(t) = 8P(ψ), (2.1)

where P(u) is defined by (2.4).

Similar to [7], we know that the solution u of Eq (1.2) satisfies two identities.∫
|∇u|2 + ω

∫
|u|2 + 4

∫
|u|2|∇|u||2 −

∫
|u|p+1 = 0, (2.2)

D − 2
D

(
1
2

∫
|∇u|2 +

∫
|u|2|∇|u||2) +

ω

2

∫
|u|2 −

1
p + 1

∫
|u|p+1 = 0. (2.3)

The above identities lead to the following lemma.

Lemma 2.2. For any solution u of Eq (1.2), we know

P(u) = 0 and N(u) = 0,

where P(u) and N(u) are defined by

P(v) :=
∫
|∇v|2 + (D + 2)

∫
|v|2|∇|v||2 −

D(p − 1)
2(p + 1)

∫
|v|p+1, (2.4)

N(v) :=
∫
|∇v|2 + ω

∫
|v|2 + 4

∫
|v|2|∇|v||2 −

∫
|v|p+1. (2.5)
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Let
N = {v ∈ XC; N(v) = 0, v , 0},
M = {v ∈ XC; P(v) = 0, v , 0},

and then we consider the minimization problems

dN = inf
v∈N

S ω(v), (2.6)

dM = inf
v∈M

S ω(v). (2.7)

It is clear that
dM = inf

v∈M
S +
ω(v),

where the functional S +
ω is defined by

S +
ω(v) = S ω(v) − 2

D(p−1) P(v)
=

D(p−1)−4
2D(p−1)

∫
|∇v|2 + ω

2

∫
|v|2 +

D(p−3)−4
D(p−1)

∫
|v|2|∇|v||2.

We introduce the following minimizing problem

dM′ = inf{S +
ω(v) : P(v) ≤ 0, v ∈ XC}. (2.8)

From Lemma 3.4 in [7], we have the variational characterization of the ground state solutions of
Eq (1.2).

Lemma 2.3. For 3 ≤ p < 22∗ − 1, it holds that the set of minimizer of problem (2.6) is exactly the set
Gω.

Now we investigate the behavior of the functionals S ω(u) and P(u) under the scaling.

Lemma 2.4. Let v ∈ H1 \ {0}, ω > 0, P(v) = 0 and assume that p ≥ 3 + 4
D . Let λ > 0 and define

vλ = λ
D
2 v(λx). Then it holds that

S ω(vλ) < S ω(v) for λ ∈ (0, 1) ∪ (1,∞).

Proof. For the case p > 3 + 4
D , the result is proved by Lemma 3.3 in [7].

Let p = 3 + 4
D . Set f (λ) = S ω(vλ). Direct computation leads to

f (λ) = S ω(vλ)
= λ2

2

∫
|∇v|2 + λD+2(

∫
|v|2|∇|v||2 − 1

4+ 4
D

∫
|v|4+ 4

D ) + ω
2

∫
|v|2,

P(vλ) = λ2
∫
|∇v|2 + λD+2(D + 2)(

∫
|v|2|∇|v||2 − 1

4+ 4
D

∫
|v|4+ 4

D ),

f ′(λ) = ∂
∂λ

S ω(vλ)
= λ
∫
|∇v|2 + λD+1(D + 2)(

∫
|v|2|∇|v||2 − 1

4+ 4
D

∫
|v|4+ 4

D ) = 1
λ
P(vλ),

f ′′(λ) = ∂2

∂λ2 S ω(vλ)
=
∫
|∇v|2 + λD(D + 2)(D + 1)(

∫
|v|2|∇|v||2 − 1

4+ 4
D

∫
|v|4+ 4

D ).

The fact P(v) = 0 implies that

(D + 2)(
∫
|v|2|∇|v||2 −

1
4 + 4

D

∫
|v|4+ 4

D ) = −

∫
|∇v|2 =: −δ < 0.
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Thus, f ′′(λ) is positive for small values of λ, and tends to −∞ as λ → +∞, and is strictly decreasing.
Hence, there exists λ2 > 0 such that

f ′′(λ2) = 0 and f ′′(λ)(λ2 − λ) > 0 for λ , λ2. (2.9)

Since f ′ is increasing for λ < λ2 and f ′(0) = 0, f ′ takes positive values at least for λ < λ2. For λ > λ2,
f ′ decreases, and tends to −∞. Thus, there exists λ1 > λ2 such that

f ′(λ1) = 0 and f ′(λ)(λ1 − λ) > 0 for λ , λ1. (2.10)

Therefore, λ1 is the unique critical point of f on (0,+∞). Noticing f ′(λ) = 1
λ
P(vλ) and P(v) = 0, we

infer that λ1 = 1, and f (λ) attains maximum at λ = 1. �
Using Lemma 2.4, we get the following lemma.

Lemma 2.5. For ω > 0 and p ≥ 3 + 4
D , it holds that

dN = dM := d. (2.11)

Proof. We prove the result in two steps.
Step 1. dM ≤ dN . Let f ∈ H1 be a solution to (2.6). By Lemma 2.3, it is a ground state of (1.2); and
by applying the Pohozaev identity (2.3) to a standing solution we immediately deduce P( f ) = 0. By
definition N( f ) = 0, we have f ∈ M. Hence dM ≤ dN , since S ω( f ) = dN .
Step 2. dN ≤ dM. On the other hand, for any h ∈ M, setting hλ = λ

D
2 h(λx), we have

N(hλ) = λ2
∫
|∇h|2 + ω

∫
|h|2 + 4λD+2

∫
|h|2|∇|h||2 − λ

D(p−1)
2

∫
|h|p+1. (2.12)

It is obvious that
N(hλ)→ ω

∫
|h|2 > 0 as λ→ 0. (2.13)

On the other hand, for p ≥ 3 + 4
D , we claim that

N(hλ) < 0 as λ→ +∞. (2.14)

When p > 3 + 4
D , one get D(p−1)

2 > D + 2. Hence (2.14) follows from (2.12).
When p = 3 + 4

D , (2.12) reduces to

N(hλ) = λ2
∫
|∇h|2 + ω

∫
|h|2 + λD+2(4

∫
|h|2|∇|h||2 −

∫
|h|4+ 4

D ). (2.15)

As P(h) = 0, it follows from (2.4) with p = 3 + 4
D that∫

|h|2|∇|h||2 −
D

4(D + 1)

∫
|h|p+1 = −

1
(D + 2)

∫
|∇h|2 < 0,

from which we get that

4
∫
|h|2|∇|h||2 −

∫
|h|4+ 4

D < 0.

Hence (2.14) follows from (2.15).
It follows from (2.13) and (2.14) that there exists λ̂ ∈ (0,∞) such that N(hλ̂) = 0 and hλ̂ ∈ N . Thus we
get S ω(hλ̂) ≥ dN . Using P(h) = 0, from Lemma 2.4, we obtain S ω(h) ≥ S ω(hλ̂) ≥ dN . Thus S ω(h) ≥ dN
holds true for any h ∈ M, which yields dM ≥ dN . �
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Lemma 2.6. For ω > 0 and p ≥ 3 + 4
D , it holds that

dM = dM′ = d. (2.16)

Moreover, the minimum of (2.8) is attained at v ∈ M.

Proof. It follows from the definitions of dM and dM′ that dM ≥ dM′ . We need only to prove that
dM ≤ dM′ . In fact, for any v satisfying P(v) < 0, we have

P(λv) = λ2
∫
|∇v|2 + (D + 2)λ4

∫
|v|2|∇|v||2 −

D(p − 1)
2(p + 1)

λp+1
∫
|v|p+1.

The fact p ≥ 3 + 4
D implies that P(λv) > 0 for λ small sufficiently. Thus, there exists λ ∈ (0, 1) such

that P(λv) = 0, i.e., λv ∈ M.

S +
ω(λv) =

D(p − 1) − 4
2D(p − 1)

λ
2
∫
|∇v|2 +

ω

2
λ

4
∫
|v|2 +

D(p − 3) − 4
D(p − 1)

λ
p+1
∫
|v|2|∇|v||2.

Hence, S +
ω(λv) < S +

ω(v). The conclusion of this lemma follows. �
Now, we prove the main theorem of this paper.

Proof of Theorem 1.2. We divide the proof into four steps.
Step 1. We construct a sequence of initial data Qλ

ω(x) satisfying the properties.

S ω(Qλ
ω) < d, P(Qλ

ω) < 0.

Let ε > 0 be fixed and consider Qλ
ω(x) = λ

D
2 Qω(λx) for the ground state solution Qω. We get

‖Qλ
ω‖2 = ‖Qω‖2. By the continuity of the mapping λ 7→ λ

D
2 Qω(λx), if λ > 1 sufficiently closes to 1, it

is clear that ‖Qλ
ω − Qω‖H1 ≤ ε. Moreover, using the facts P(Qω) = 0, S ω(Qω) = d and λ > 1, we obtain

from Lemma 2.4 that
S ω(Qλ

ω) < d, P(Qλ
ω) < 0. (2.17)

Step 2. We prove that (2.17) is invariant under the flow of (1.1).
Now fix a λ > 1 such that (2.17) is valid. Let ψλ(t, x) be the solution of (1.1) with ψλ(0) = Qλ

ω. We
claim that the properties described in (2.17) are invariant under the flow of (1.1). That is

S ω(ψλ(t)) < d, P(ψλ(t)) < 0, for all t ∈ [0,T ), (2.18)

where T ∈ (0,+∞] is the maximal existence time. Using (1.3), (1.4) and (2.17), we get

S ω(ψλ(t)) = S ω(Qλ
ω) < d.

In turn, we infer that P(ψλ(t)) , 0 for all t ∈ [0,T ), otherwise if P(ψλ(t)) = 0 for some t0 ∈ [0,T ),
we would have ψλ(t0) ∈ M, yielding S ω(ψλ(t)) ≥ d, which contradicts the first inequality of (2.18).
Therefore, P(ψλ(t)) < 0 for all t ∈ [0,T ).
Step 3. We prove that P(ψλ) stays negative and away from 0 for all t ∈ [0,T ).

It follows from Lemma 2.6 and the result of step 2 that

d ≤ S +
ω(ψλ(t)) = S ω(ψλ(t)) −

2
D(p − 1)

P(ψλ(t)).

AIMS Mathematics Volume 7, Issue 6, 9683–9693.
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Noticing
S ω(ψλ(t)) = S ω(ψλ(0)) = S ω(Qλ

ω),

we get

d ≤ S +
ω(ψλ(t)) = S ω(Qλ

ω) −
2

D(p − 1)
P(ψλ(t)). (2.19)

It follows that
P(ψλ(t)) ≤

D(p − 1)
2

(S ω(Qλ
ω) − d) := −δ < 0. (2.20)

Step 4. Conclusion
Since the ground sate of (1.2), Qω(x), has an exponential fall-off at infinity (Proposition 2.1 iv), it is

clear that | · |ψλ(·) ∈ L2.
By Lemma 2.1 and (2.20), we have

J(t) ≤ J(0) + J′(0)t − 4δt2,

where J(t) =
∫
|x|2|u|2. Thus we can find a T0 such that

lim
t→T0

J(t) = 0.

Observing that ∫
|u|2 ≤ C(

∫
|x|2|u|2)

1
2 (
∫
|∇u|2)

1
2

and C is independent of u, we obtain from the conservation of mass (1.3) that the solution blows up in
finite time. Since it is clear that Qλ

ω → Qω in H1 when λ→ 1, Theorem 1.2 is proved. �

3. Remark on the stability of the standing wave

To study the stability of the standing waves of (1.1), Colin, Jeanjean and Squassina [7] introduce
the following minimizing problem

mµ = inf{E(v) : v ∈ H1(R2), ‖v‖2L2(R2) = µ}. (3.1)

The set of minimizers for (3.1) is denoted by Σµ:

Σµ = {v ∈ H1(R2) : E(v) = mµ, ‖v‖2L2(R2) = µ}.

Theorem 3.1. [Theorems 1.9 and 1.12 in [7]]
(1) Let 1 < p < 1 + 4

D . Then, the set Σµ is not empty for µ ∈ (0,∞).
(2) Let 1 + 4

D ≤ p ≤ 3 + 4
D . Then, the set Σµ is not empty if and only if µ ∈ [µ(p,D),∞), where µ(p,D)

is defined by µ(p,D) = inf{µ > 0 : mµ < 0}
(3) For 1 < p < 3 + 4

D , Σµ is stable in the sense that for any ε > 0, there exists δ > 0 such that

inf
u∈Σµ
‖ψ0 − u‖H1 < δ⇒ sup

t∈[0,T )
inf
u∈Σµ
‖ψ(t, ·) − u‖H1 < ε,

where ψ(t, ·) is the solution of the Cauchy problem of (1.1) with initial condition ψ0 ∈ XC ∩ H s, and T
is the existence time for ψ.
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For any minimizer u ∈ Σµ of (3.1), there exists ω∗ = ω∗(µ, u) such that u is a solution of (1.2) with
ω = ω∗. As pointed by [7], to study the stability of Gω via Theorem 3.1, the relation between Gω and
Σµ need to be investigated. Motivated by Theorem 1.3.1 in [14], we establish the following theorem.

Theorem 3.2. Let D ≥ 3. u ∈ Σµ be a solution of (1.2) with ω = ω∗, i.e. Σµ ∩ Xω∗ , ∅. Then it holds
that Gω∗ ⊆ Σµ.

Proof. Let u ∈ Σµ ∩ Xω∗ . Define the functionals T (·) and V(·).

T (u) :=
1
2

∫
|∇u|2 +

∫
|u|2|∇|u||2. (3.2)

V(u) := −
ω

2

∫
|u|2 +

1
p + 1

∫
|u|p+1. (3.3)

It is clear that S ω(u) = T (u) − V(u).
For any ϕ ∈ Gω∗ , we have S ω∗(ϕ) ≤ S ω∗(u). Noticing (2.3), we deduce that

2
D

T (ϕ) ≤
2
D

T (u). (3.4)

Setting ϕ̃ = ϕ( x
λ
) with λ =

√
µ

‖ϕ‖L2
, we have ‖ϕ̃‖2L2 = µ. It follows that E(u) ≤ E(ϕ̃). Using the fact

S ω∗(v) = E(v) + ω∗

2 ‖v‖L2 , we get S ω∗(u) ≤ S ω∗(ϕ̃). Noticing

S ω∗(ϕ̃) = T (ϕ̃) − V(ϕ̃),

T (ϕ̃) = λD−2T (ϕ),

V(ϕ̃) = λDV(ϕ),

V(ϕ) =
D − 2

D
T (ϕ), (by 2.3)

we have
2
D

T (u) ≤ (λD−2 − λD D − 2
D

)T (ϕ). (3.5)

It follows (3.4) and (3.5) that
2
D
≤ λD−2 − λD D − 2

D
.

That is
f (λ) := (D − 2)λD − DλD−2 + 2 ≤ 0.

It is easy to check that f (1) = 0 and f (λ) > 0 for λ , 1. Thus λ = 1, which implies ‖ϕ‖2L2 = µ for all
u ∈ Gω∗ and Gω∗ ⊆ Σµ. �

Remark 3.1. (1) Theorem 3.2 shows that the stable set Σµ consists of some ground state solutions
of (1.2).
(2) If Σµ ∩ Xω∗ , ∅, Theorem 3.2 implies that Gω∗ ⊆ Σµ. This shows that the elements of Gω∗ share
same L2 norm. This conclusion is also implied by the uniqueness of the ground state of (1.2), which
is showed in [1] under the condition that ω

2
p−1 ≥ c0 with c0 being a constant depending only on p. (3)

There are two questions remain open on the relation between Σµ andGω. Firstly, for different minimizer
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in Σµ, we do not know if they have same Lagrange multiplier. Second, for any ω > 0, it is unknown
that if there exists µ such that Gω ⊆ Σµ.
(4) For the case D = 2, the same argument of Theorem 3.2 can show that if u ∈ Σµ ∩Xω∗ then u ∈ Gω∗ .
However, we can not prove that the elements of u ∈ Gω∗ have same L2 norm.
(5) For Eq (1.2) without −u4|u|2, there are some classical results on the relation of Σµ and Gω [4].

(i) For 1 < p < 1 + 4
D , there exists one to one correspondence between µ > 0 and ω > 0 such that

Σµ = Gω.
(ii) For p = 1 + 4

D , there exists a constant µ0 such that

(a) ‖ϕ‖2L2 = µ0 for all ϕ ∈ Gω with ω ∈ (0,∞),
(b) Σµ is nonempty if and only if µ = µ0,
(c) Σµ0 =

⋃
ω≥0
Gω.

4. Conclusions

In this paper, we consider the strong instability of standing waves for the quasi-linear Schrödinger
equation (1.1). In the critical case, i.e., p = 3 + 4

D , we prove that the standing waves are strongly
unstable by blow-up. This result is a complement to the result of Colin, Jeanjean and Squassina [7]
where the instability of standing waves were studied in the supercritical case, i.e., 3 + 4

D < p < 3D+2
D−2 .
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