Research article

Improved VIKOR methodology based on $ q $-rung orthopair hesitant fuzzy rough aggregation information: application in multi expert decision making

  • Received: 22 December 2021 Revised: 31 January 2022 Accepted: 14 February 2022 Published: 14 March 2022
  • MSC : 03B52, 03E72

  • The main objective of this article is to introduce the idea of a q-rung orthopair hesitant fuzzy rough set (q-ROHFRS) as a robust fusion of the q-rung orthopair fuzzy set, hesitant fuzzy set, and rough set. A q-ROHFRS is a novel approach to uncertainty modelling in multi-criteria decision making (MCDM). Various key properties of q-ROHFRS and some elementary operations on q-ROHFRSs are proposed. Based on the q-ROHFRS operational laws, novel q-rung orthopair hesitant fuzzy rough weighted averaging operators have been developed. Some interesting properties of the proposed operators are also demonstrated. Furthermore, by using the proposed aggregation operator, we develop a modified VIKOR method in the context of q-ROHFRS. The outcome of this research is to rank and select the best alternative with the help of the modified VIKOR method based on aggregation operators for q-ROHFRS. A decision-making algorithm based on aggregation operators and extended VIKOR methodology has been developed to deal with the uncertainty and incompleteness of real-world decision-making. Finally, a numerical illustration of agriculture farming is considered to demonstrate the applicability of the proposed methodology. Also, a comparative study is presented to demonstrate the validity and effectiveness of the proposed approach. The results show that the proposed decision-making methodology is feasible, applicable, and effective to address uncertainty in decision making problems.

    Citation: Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Muhammad Naeem, Choonkil Park. Improved VIKOR methodology based on $ q $-rung orthopair hesitant fuzzy rough aggregation information: application in multi expert decision making[J]. AIMS Mathematics, 2022, 7(5): 9524-9548. doi: 10.3934/math.2022530

    Related Papers:

  • The main objective of this article is to introduce the idea of a q-rung orthopair hesitant fuzzy rough set (q-ROHFRS) as a robust fusion of the q-rung orthopair fuzzy set, hesitant fuzzy set, and rough set. A q-ROHFRS is a novel approach to uncertainty modelling in multi-criteria decision making (MCDM). Various key properties of q-ROHFRS and some elementary operations on q-ROHFRSs are proposed. Based on the q-ROHFRS operational laws, novel q-rung orthopair hesitant fuzzy rough weighted averaging operators have been developed. Some interesting properties of the proposed operators are also demonstrated. Furthermore, by using the proposed aggregation operator, we develop a modified VIKOR method in the context of q-ROHFRS. The outcome of this research is to rank and select the best alternative with the help of the modified VIKOR method based on aggregation operators for q-ROHFRS. A decision-making algorithm based on aggregation operators and extended VIKOR methodology has been developed to deal with the uncertainty and incompleteness of real-world decision-making. Finally, a numerical illustration of agriculture farming is considered to demonstrate the applicability of the proposed methodology. Also, a comparative study is presented to demonstrate the validity and effectiveness of the proposed approach. The results show that the proposed decision-making methodology is feasible, applicable, and effective to address uncertainty in decision making problems.



    加载中


    [1] M. I. Ali, Another view on q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2018), 2139–2153. https://doi.org/10.1002/int.22007 doi: 10.1002/int.22007
    [2] S. Ashraf, S. Abdullah, S. Khan, Fuzzy decision support modeling for internet finance soft power evaluation based on sine trigonometric Pythagorean fuzzy information, J. Ambient Intell. Humaniz. Comput., 12 (2021), 3101–3119. https://doi.org/10.1007/s12652-020-02471-4 doi: 10.1007/s12652-020-02471-4
    [3] Attaullah, S. Ashraf, N. Rehman, A Khan, C. Park, A decision making algorithm for wind power plant based on q-rung orthopair hesitant fuzzy rough aggregation information and TOPSIS, AIMS Mathematics, 7 (2022), 5241–5274. https://doi.org/10.3934/math.2022292 doi: 10.3934/math.2022292
    [4] Attaullah, S. Ashraf, N. Rehman, H. AlSalman, A. H. Gumaei, A Decision-Making Framework Using q-Rung Orthopair Probabilistic Hesitant Fuzzy Rough Aggregation Information for the Drug Selection to Treat COVID-19, Complexity, 2022 (2022). https://doi.org/10.1155/2022/5556309 doi: 10.1155/2022/5556309
    [5] S. Ashraf, S. Abdullah, Spherical aggregation operators and their application in multiattribute group decision?making, Int. J. Intell. Syst., 34 (2019), 493–523. https://doi.org/10.1002/int.22062 doi: 10.1002/int.22062
    [6] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [7] S. Ashraf, N. Rehman, A. Hussain, H. AlSalman, A. H. Gumaei, q-Rung Orthopair Fuzzy Rough Einstein Aggregation Information-Based EDAS Method: Applications in Robotic Agrifarming, Comput. Intell. Neurosci., 2021 (2021), 5520264. https://doi.org/10.1155/2021/55202649 doi: 10.1155/2021/55202649
    [8] S. Ashraf, N. Rehman, H. AlSalman, A. H. Gumaei, A Decision-Making Framework Using q-Rung Orthopair Probabilistic Hesitant Fuzzy Rough Aggregation Information for the Drug Selection to Treat COVID-19, Complexity, 2022 (2022), 5556309. https://doi.org/10.1155/2022/5556309 doi: 10.1155/2022/5556309
    [9] K. T. Atanassov, Intuitionistic fuzzy sets, Springer-Verlag Berlin Heidelberg, 35 (1999), 1–137. https://doi.org/10.1007/978-3-7908-1870-3_1 doi: 10.1007/978-3-7908-1870-3_1
    [10] B. Batool, M. Ahmad, S. Abdullah, S. Ashraf, R. Chinram, Entropy based Pythagorean probabilistic hesitant fuzzy decision making technique and its application for fog-haze factor Assessment problem, Entropy, 22 (2020), 318. https://doi.org/10.3390/e22030318 doi: 10.3390/e22030318
    [11] B. Batool, S. S. Abosuliman, S. Abdullah, S. Ashraf, EDAS method for decision support modeling under the Pythagorean probabilistic hesitant fuzzy aggregation information, J. Ambient Intell. Humaniz. Comput., 2021 (2021), 1–14. https://doi.org/10.1007/s12652-021-03181-1 doi: 10.1007/s12652-021-03181-1
    [12] B. Batool, S. Abdullah, S. Ashraf, M. Ahmad, Pythagorean probabilistic hesitant fuzzy aggregation operators and their application in decision-making, Kybernetes, 2021. https://doi.org/10.1108/K-11-2020-0747 doi: 10.1108/K-11-2020-0747
    [13] C. Cornelis, M. De Cock, E. E. Kerre, Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge, Expert syst., 20 (2003), 260–270. https://doi.org/10.1111/1468-0394.00250 doi: 10.1111/1468-0394.00250
    [14] R. Chinram, A. Hussain, T. Mahmood, M. I. Ali, EDAS Method for Multi-Criteria Group Decision Making Based on Intuitionistic Fuzzy Rough Aggregation Operators, IEEE Access, 9 (2021), 10199–10216. https://doi.org/10.1109/ACCESS.2021.3049605 doi: 10.1109/ACCESS.2021.3049605
    [15] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107
    [16] A. A. Khan, S. Ashraf, S. Abdullah, M. Qiyas, J. Luo, S. Khan, Pythagorean fuzzy Dombi aggregation operators and their application in decision support system, Symmetry, 11 (2019), 383. https://doi.org/10.3390/sym11030383 doi: 10.3390/sym11030383
    [17] M. J. Khan, P. Kumam, M. Shutaywi, Knowledge measure for the q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 36 (2021), 628–655. https://doi.org/10.1002/int.22313 doi: 10.1002/int.22313
    [18] M. A. Khan, S. Ashraf, S. Abdullah, F. Ghani, Applications of probabilistic hesitant fuzzy rough set in decision support system, Soft Comput., 24 (2020), 16759–16774. https://doi.org/10.1007/s00500-020-04971-z doi: 10.1007/s00500-020-04971-z
    [19] R. Krishankumar, Y. Gowtham, I. Ahmed, K. S. Ravichandran, S. Kar, Solving green supplier selection problem using q-rung orthopair fuzzy-based decision framework with unknown weight information, Appl. Soft Comput., 94 (2020), 106431. https://doi.org/10.1016/j.asoc.2020.106431 doi: 10.1016/j.asoc.2020.106431
    [20] D. Liu, D. Peng, Z. Liu, The distance measures between q-rung orthopair hesitant fuzzy sets and their application in multiple criteria decision making, Int. J. Intell. Syst., 34 (2019), 2104–2121. https://doi.org/10.1002/int.22133 doi: 10.1002/int.22133
    [21] D. Liu, A. Huang, Consensus reaching process for fuzzy behavioral TOPSIS method with probabilistic linguistic q-rung orthopair fuzzy set based on correlation measure, Int. J. Intell. Syst., 35 (2020), 494–528. https://doi.org/10.1002/int.22215 doi: 10.1002/int.22215
    [22] A. R. Mishra, P. Rani, R. Krishankumar, K. S. Ravichandran, S. Kar, An extended fuzzy decision-making framework using hesitant fuzzy sets for the drug selection to treat the mild symptoms of Coronavirus Disease 2019 (COVID-19), Appl. Soft Comput., 103 (2021), 107155. https://doi.org/10.1016/j.asoc.2021.107155 doi: 10.1016/j.asoc.2021.107155
    [23] T. Mahmood, A novel approach towards bipolar soft sets and their applications, J. Math., 2020 (2020), 4690808. https://doi.org/10.1155/2020/4690808 doi: 10.1155/2020/4690808
    [24] T. Mahmood, U. Ur Rehman, A novel approach towards bipolar complex fuzzy sets and their applications in generalized similarity measures, Int. J. Intell. Syst., 37(1) (2022), 535–567. https://doi.org/10.1002/int.22639 doi: 10.1002/int.22639
    [25] Z. Pawlak, Rough sets, In. j. comput. inf. sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [26] X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. https://doi.org/10.1002/int.21738 doi: 10.1002/int.21738
    [27] X. Peng, J. Dai, H. Garg, Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function, Int. J. Intell. Syst., 33 (2018), 2255-2282. https://doi.org/10.1002/int.22028 doi: 10.1002/int.22028
    [28] X. Peng, L. Liu, Information measures for q-rung orthopair fuzzy sets, Int. J. Inte. Syst., 34 (2019), 1795–1834. https://doi.org/10.1002/int.22115 doi: 10.1002/int.22115
    [29] V. Torra, Hesitant fuzzy sets, Int. J. Inte. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [30] P. Wang, G. Wei, J. Wang, R. Lin, Y. Wei, Dual hesitant q-rung orthopair fuzzy hamacher aggregation operators and their applications in scheme selection of construction project, Symmetry, 11 (2019), 771. https://doi.org/10.3390/sym11060771 doi: 10.3390/sym11060771
    [31] J. Wang, G. Wei, C. Wei, Y. Wei, Dual hesitant q-Rung Orthopair fuzzy Muirhead mean operators in multiple attribute decision making, IEEE Access, 7 (2019), 67139–67166. https://doi.org/10.1109/ACCESS.2019.2917662 doi: 10.1109/ACCESS.2019.2917662
    [32] Y. Wang, Z. Shan, L. Huang, The extension of TOPSIS method for multi-attribute decision-making with q-Rung orthopair hesitant fuzzy sets, IEEE Access, 8 (2020), 165151–165167. https://doi.org/10.1109/ACCESS.2020.3018542 doi: 10.1109/ACCESS.2020.3018542
    [33] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [34] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [35] S. M. Yun, S. J. Lee, Intuitionistic fuzzy rough approximation operators, Int. J. Fuzzy Log. Intell., 15 (2015), 208–215. https://doi.org/10.1109/GrC.2010.182 doi: 10.1109/GrC.2010.182
    [36] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [37] J. Zhan, H. M. Malik, M. Akram, Novel decision-making algorithms based on intuitionistic fuzzy rough environment, Int. J. Mach. Learn. Cybern., 10 (2019), 1459–1485. https://doi.org/10.1007/s13042-018-0827-4 doi: 10.1007/s13042-018-0827-4
    [38] X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Inte. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [39] C. Zhang, Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm, Int. J. Fuzzy Syst., 22 (2020), 1694–1715. https://doi.org/10.1007/s40815-020-00849-2 doi: 10.1007/s40815-020-00849-2
    [40] L. Zhou, W. Z. Wu, On generalized intuitionistic fuzzy rough approximation operators, Inf. Sci., 178 (2008), 2448–2465. https://doi.org/10.1016/j.ins.2008.01.012 doi: 10.1016/j.ins.2008.01.012
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1499) PDF downloads(80) Cited by(7)

Article outline

Figures and Tables

Tables(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog