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Abstract: The main objective of this article is to introduce the idea of a q-rung orthopair hesitant
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the applicability of the proposed methodology. Also, a comparative study is presented to demonstrate
the validity and effectiveness of the proposed approach. The results show that the proposed decision-
making methodology is feasible, applicable, and effective to address uncertainty in decision making
problems.
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1. Introduction

Numerous researchers have conducted extensive research on multi-criteria decision making
(MCDM) techniques in the real world [5–8,11,12]. This pursuit resulted in the development of various
industrious techniques for dealing with real-world challenges. The approaches developed to achieve
that goal are based entirely on a description of the problem under consideration. Every aspect of
practical life contains numerous ambiguities, complexities, and uncertainties, and it is impossible to
analyse different types of decision-making information using a single value. Numerous scholars have
concentrated on the challenges associated with imprecise, ambiguous, and hazy information throughout
the previous few decades. To deal with uncertainties and vagueness, Zadeh [36] pioneered the concept
of fuzzy sets (FSs), which has been defined by the element’s membership function. Various researchers
have shown the fuzzy set’s applicability in a variety of fields, including decision-making, medical
diagnosis, engineering, socioeconomic, and financial difficulties, etc.

Atanassov [9] introduced the notion of intuitionistic fuzzy sets (IFSs) based on the two characteristic
functions, which are membership and non-membership grades, such that their sum is less than or
equal to 1. As an efficient mathematical tool, the IFSs have been widely applied to many research
fields. However, as the complexity of problems increases, the IFSs cannot depict the fuzzy situations
where ðz(x) + Bz(x) > 1. To address this issue, Yager [33] expanded the restrictive conditions of
IFSs to (ðz(x))2 + (Bz(x))2 = 1 and created Pythagorean fuzzy sets (PyFSs). In 2014, Zhang [38]
introduced the concept of a scoring function based on Yager’s approach and enhanced TOPSIS by
utilizing PFS to describe ambiguous information. In 2015, Peng and Yang [26] investigated the basic
operational laws under PyFS and discussed their significance in group DM through similarity measures.
Khan et al. [16] established the Dombi aggregation operators (AOp) based on Dombi t-norm and t-
conorm. Batool et al. [10] introduced the DM methodology using the entropy measure and Pythagorean
probabilistic HFSs and discussed their applicability in evaluation of the fog-haze factor. Ashraf et
al. [2] presented the sine trigonometric function based novel AOp under PyFS. This good work provides
the necessary preparation for the extensive application of PyF numbers. Although PyFSs can express
fuzzier information than IFSs, they will also lose efficiency in situations where (ðz(x))2 + (Bz(x))2 >

1. q-Rung orthopair fuzzy sets (q-ROFSs) in which (ðz(x))q + (Bz(x))q
≤ 1, introduced by Yager

[34], are able to solve the above-mentioned predicament fundamentally. The concept of q-ROFSs
provides decision-makers (DMs) with a lot of flexibility and space to explore different alternatives
under a set of criteria. In recent years, q-ROFSs have emerged many new methods and techniques
in decision-making theory and its application. These achievements can be attributed to two aspects:
MADM and multi-attribute group decision making (MAGDM) [19, 22–24]. This is mainly because
it is difficult for decision-makers to accurately decide alternatives for multiple attribute indexes when
they obtain uncertain or incomplete information. In 2018, Peng et al. [27] developd the novel AOp
using exponential function and elaborate their applicability in MADM. Peng and Liu [28] introduced
the information measures under q-ROFSs. Khan et al., [17] established the knowledge measures for
q-ROFSs. Ali [1] presented the novel DM technique to tackle the uncertainty in the form of q-ROFSs.
Liu and Huang [21] established the extended TOPSIS under probabilistic linguistic q-ROFSs using
correlation measures and highlighted their applicability in decision making. Afterwards, by taking into
consideration the hesitancy, the notion of the hesitant fuzzy set (HFS) was formulated by Torra [29],
in which the membership degree is represented by multiple discrete values rather than a single value.
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Khan et al. [18] established the technique of similarity measures under probabilistic hesitant fuzzy
rough environment. Liu et al. [20] extended the notation of HFSs to q-rung orthopair hesitant fuzzy
sets (q-ROHFSs), considering the hesitancy in membership as well as in non-membership grades.
Wang et al. [30] proposed the Hamacher norm based AOps under dual hesitant q-ROFSs and discussed
their application in decision making problems. Wang et al. [31] developed the AOps based on Muirhead
mean under dual hesitant q-rung orthopair fuzzy information. Wang et al. [32] constructed the extended
TOPSIS process for q-ROHFSs and discussed their application in DM.

Pawlak [25] is pioneer who studied the dominant concept of rough set (RS) theory. Rough set
theory (RS) is an extension of traditional set theory that deals with inconsistencies and uncertainty. In
recent decades, research on the rough set has progressed significantly, both in terms of theoretical
implementations and theory itself. Numerous scholars from across the globe have broadened the
notion of RS in a variety of areas. Using the fuzzy relation rather than the crisp binary relation,
Dubois et al. [15] initiated the notion of fuzzy rough sets. The hybrid structure of IFSs and rough
sets, intuitionistic fuzzy rough (IFR) sets introduced by Cornelis et al. [13]. IFRSs serve as a crucial
link between these two theories. By utilizing IFR approximations, Zhou and Wu [40] established a
novel decision making technique under IFR environment to address their constrictive and axiomatic
analysis in detail. Zhan et al. [37] presented the DM techniques under IFR environment and explored
their application in real word problems. Different extensions of IFRS are being investigated [35,39] to
tackle the uncertainty in MCGDM problems. Chinram et al. [14] developed the algebraic norm based
AOs based EDAS technique under IFR settings and discussed their application in MAGDM. In certain
real-world situations, decision-makers (DMs) have strong opinions regarding the ranking or rating of a
organization’s plans, projects, or official statements. For example, let the administration of a university
initiate a large-scale project of football ground. The members of the university administration may
rate their project highly by assigning positive membership (ð = 0.9), but others may consider the
same program as a waste of money and attempt to discredit it by proposing completely contradictory
viewpoints. So they assign negative membership (B = 0.7). In this situation, ðz(x) + Bz(x) > 1 and
(ðz(x))2 + (Bz(x))2 > 1 but (ðz(x))q + (Bz(x))q < 1 for q > 3. So that (ð,B) is neither IFN nor PFN
but it is q-ROFN. Thus, Yager’s q-ROFNs are effective in dealing with data uncertainty. The q-Rung
orthopair hesitant fuzzy rough sets (q-ROHFRS), a hybrid intelligent structure of rough sets, and q-
ROHFS is a comprehensive classification approach that has attracted researchers for its capacity to
cope with ambiguous and imperfect information. The research leads to the fact that AOps are crucial
in DM because they provide information from several sources to be integrated into a single value.
According to existing literature, the development of AOps following q-ROHFS hybridization with a
rough set is not observed in the q-ROF environment. As a consequence of this inspiration, we construct
a variety of algebraic aggregation operators for rough information, including q-rung orthopair hesitant
fuzzy rough weighted averaging, order weighted averaging, and hybrid weighted averaging, under the
algebraic t-norm and t-conorm. The noteworthy contributions of the present article are follows:
(1) To construct new notion of q-rung orthopair hesitant fuzzy rough sets and investigate their basic
operational laws.
(2) To compile a list of aggregation operators based on the algebraic t-norm and t-conorm, and analyze
their associated features in details.
(3) To develop a DM methodology using proposed aggregation operators to aggregate the uncertain
information in real word decision making problems.
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(4) A numerical case study of a real-world DM problem in agricultural farming is addressed to
demonstrate the methodology’s validity.
(5) q-ROHFR-VIKOR method is employed to validate the proposed DM approach.
The remainder of the manuscript is arranged as follows: Section 2 briefly retrospects some basic
concepts of q-ROFSs, HFSs and rough set theory. A novel notion of q-rung orthopair hesitant
fuzzy sets is presented and also their basic interesting operational laws are defined in Section 3.
Section 4 highlights the improved q-ROHFR-VIKOR methodology under q-rung orthopair hesitant
fuzzy rough information. Section 5 presents the numerical illustration concerning the agriculture
farming. Further this section deals with the applicability of the developed methodology. Section 6
establishes comparison analysis using q-ROHFR weighted averaging aggregation operator to validate
the q-ROHFR-VIKOR methodology. Section 7 concludes this manuscript.

2. Preliminaries

This section describes the basic terminologies i.e., intuitionistic fuzzy sets (IFS), q-Rung orthopair
fuzzy sets (q-ROFS), hesitant fuzzy sets (HFS), q-rung ortopair hesitant fuzzy sets (q-ROHFS), rough
sets (RS) and q-rung orthopair fuzzy rough set (q-ROFRS).

Definition 1. [9] For a universal set ℵ, an IFS z over ℵ is follows as:

z = {〈x, ðz(x),Bz(x)〉|x ∈ ℵ} ,

for each x ∈ z the functions ðz : ℵ → [0 ,1] and Bz : ℵ → [0, 1] denotes the degree of membership
and non membership respectively, which must satisfy the property 0 ≤ ðz(x) + Bz(x) ≤ 1.

Definition 2. [34] For a universal set ℵ, a q-ROFS T over ℵ is defined as:

T = {〈x, ðT (x),BT (x)〉|x ∈ ℵ}

for each x ∈ T the functions ðT : ℵ → [0, 1] and BT : ℵ → [0, 1] denote the degrees of membership
and non membership respectively, which must satisfy (BT (x))q + (ðT (x))q ≤ 1, (q > 2 ∈ Z).

Definition 3. [20] For a universal set ℵ, a q-rung orthopair hesitant fuzzy set (q-ROHFS)H is defined
as:

H = {
〈
x, ðhH (x),BhH (x)

〉
|x ∈ ℵ},

where ðhH (x) and BhH (x) are sets of some values in [0, 1] denote the membership and non membership
grades respectively. It is required to satisfy the following properties: ∀x ∈ ℵ, ∀µH (x) ∈ ðhH (x),
∀νH (x) ∈ BhH (x) with

(
max

(
ðhH (x)

))q
+
(
min

(
BhH (x)

))q
≤ 1 and

(
min

(
ðhH (x)

))q
+
(
max

(
BhH (x)

))q
≤ 1.

For simplicity, we will use a pairH = (ðhH ,BhH ) to mean q-ROHF number (q-ROHFN).

Definition 4. [20] LetH1 = (ðhH1
,BhH1

) andH2 = (ðhH2
,BhH2

) be two q-ROHFNs. Then the basic set
theoretic operations are as follows:

(1)H1 ∪H2 =


⋃

µ1∈ðhH1
µ2∈ðhH2

max (µ1, µ2) ,
⋃

ν1∈BhH1
ν2∈BhH2

min (ν1, ν2)

 ;
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(2)H1 ∩H2 =


⋃

µ1∈ðhH1
µ2∈ðhH2

min (µ1, µ2) ,
⋃

ν1∈BhH1
ν2∈BhH2

max (ν1, ν2)

 ;

(3)H c
1 =

{
BhH1

, ðhH1

}
.

Definition 5. [20] Let H1 = (ðhH1
,BhH1

) and H2 = (ðhH2
,BhH2

) be two q-ROHFNs and q > 2 and
γ > 0 be any real number. Then the operational laws can be defined as:

(1)H1 ⊕H2 =


⋃

µ1∈ðhH1
µ2∈ðhH2

{
q
√
µ

q
1 + µ

q
2 − µ

q
1µ

q
2

}
,

⋃
ν1∈BhH1
ν2∈BhH2

{ν1 · ν2}

 ;

(2)H1 ⊗H2 =


⋃

µ1∈ðhH1
µ2∈ðhH2

{µ1 · µ2} ,
⋃

ν1∈BhH1
ν2∈BhH2

{
q
√
ν

q
1 + ν

q
2 − ν

q
1ν

q
2

} ;

(3) γH1 =

 ⋃
µ1∈ðhH1

{
q
√

1 − (1 − µq
1)γ

}
,

⋃
ν1∈BhH1

{
ν
γ
1

} ;

(4)Hγ
1 =

 ⋃
µ1∈ðhH1

{
µ
γ
1

}
,

⋃
ν1∈BhH1

{
q
√

1 − (1 − νq
1)γ

} .
Definition 6. [25] Let ℵ be the universal set and P ⊆ ℵ × ℵ be a crisp relation. Then
(1) P is reflexive if ([, [) ∈ P, for each [ ∈ ℵ;
(3) P is symmetric if ∀[, a ∈ ℵ, ([, a) ∈ P then (a, [) ∈ P;
(4) P is transitive if ∀ [, a, b ∈ ℵ, ([, a) ∈ ℵ and (a, b) ∈ P implies ([, b) ∈ P.

Definition 7. [25] Let ℵ be a universal set and P be any relation on ℵ. Define a set valued mapping
P∗ : ℵ → M(ℵ) by P∗([) = {a ∈ ℵ|([, a) ∈ P}, for [ ∈ ℵ where P∗([) is called a successor
neighbourhood of the element [with respect to relationP. The pair (ℵ,P) is called crisp approximation
space. Now for any set S ⊆ ℵ, the lower and upper approximation of S with respect to approximations
space (ℵ,P) is defined as:

P(S) = {[ ∈ ℵ|P∗([) ⊆ S};

P(S) = {[ ∈ ℵ|P∗([) ∩ S , φ}.

The pair
(
P(S),P(S)

)
is called rough set and both P(S),P(S) : M(ℵ) → M(ℵ) are upper and lower

approximation operators.

Definition 8. [14] Let ℵ be the universal set and P ∈ IFS (ℵ × ℵ) be an IF relation. Then
(1) P is reflexive if µP([, [) = 1 and νP([, [) = 0,∀[ ∈ ℵ;
(2) P is symmetric if ∀([, a) ∈ ℵ × ℵ, µP([, a) = µP(a, [) and νP([, a) = νP(a, [);
(3) P is transitive if ∀([, b) ∈ ℵ × ℵ,

µP([, b) ≥
∨

a∈ℵ

[
µP([, a) ∧ µP(a, b)

]
;
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and
νP([, b) =

∧
a∈ℵ

[
νP([, a) ∧ νP(a, b)

]
.

Definition 9. [3] Let ℵ be the universal set and for any subset P ∈ q − ROHFS (ℵ × ℵ) is said to
be an q-rung hesitant fuzzy relation. The pair (ℵ,P) is said to be q-ROHF approximation space. If
for any S ⊆ q − ROHFS (ℵ), then the upper and lower approximations of S with respect to q-ROHF
approximation space (ℵ,P) are two q-ROHFSs, which are denoted by P(S) and P(S) and defined as:

P(S) =
{〈
[, ðh

P(S)
([),Bh

P(S)
([)

〉
|[ ∈ ℵ

}
;

P(S) =
{〈
[, ðhP(S)([),BhP(S)([)

〉
|[ ∈ ℵ

}
;

where

ðh
P(S)

([) =
∨
k∈ℵ

[
ðhP([, k)

∨
ðhS(k)

]
;

Bh
P(S)

([) =
∧
k∈ℵ

[
BhP([, k)

∧
BhS(k)

]
;

ðhP(S)([) =
∧
k∈ℵ

[
ðhP([, k)

∧
ðhS(k)

]
;

BhP(S)([) =
∨
k∈ℵ

[
BhP([, k)

∨
BhS(k)

]
;

such that 0 ≤
(
max(ðh

P(S)
([))

)q
+

(
min(Bh

P(S)
([))

)q
≤ 1 and 0 ≤

(
min(ðhP(S)([)

)q
+

(
max(BhP(S)([))

)q
≤ 1.

As
(
P(S),P(S)

)
are q − ROHFS s, so P(S),P(S) : q − ROHFS (ℵ) → q − RFS (ℵ) are upper and

lower approximation operators. The pair

P(S) =
(
P(S),P(S)

)
=

{〈
[,

(
ðhP(S)([),BhP(S)([)

)
,
(
ðh
P(S)

([),Bh
P(S)

([)
)〉
|[ ∈ S

}
will be called q-rung orthopair hesitent fuzzy rough set. For simplicity

P(S) =
{〈
[,

(
ðhP(S)([),BhP(S)([)

)
,
(
ðh
P(S)

([),Bh
P(S)

([)
)〉
|[ ∈ S

}
is represented as P(S) =

(
(ð,B), (ð,B)

)
and is known as q-ROHFRV.

Definition 10. [3] LetP(S1) = (P(S1),P(S1)) andP(S2) = (P(S2),P(S2)) be two q-ROHFRSs. Then
(1) P(S1)∪ P(S2) = {(P(S1) ∪ P(S2)), (P(S1) ∪ P(S2))}
(2) P(S1)∩ P(S2) = {(P(S1) ∩ P(S2)), (P(S1) ∩ P(S2))}.

Definition 11. [3] LetP(S1) = (P(S1),P(S1)) andP(S2) = (P(S2),P(S2)) be two q-ROHFRSs. Then
(1) P(S1)⊕ P(S2) = {(P(S1) ⊕ P(S2)), (P(S1) ⊕ P(S2))}
(2) P(S1)⊗ P(S2) = {(P(S1) ⊗ P(S2)), (P(S1) ⊗ P(S2))}
(3) P(S1) ⊆ P(S2) = {(P(S1) ⊆ P(S2)) and (P(S1) ⊆ P(S2))}
(4) γP(S1) = (γP(S1), γP(S1)) for γ ≥ 1
(5) (P(S1))γ = ((P(S1))γ, (P(S1))γ) for γ ≥ 1
(6) P(S1)c = (P(S1)c, P(S1)c) where P(S1)c and P(S1)c shows the complement of q-rung fuzzy rough
approximation operators P(S1) and P(S1),that is P(S1)c =

(
BhP(S) , ðhP(S)

)
.

(7) P(S1) = P(S2) iff P(S1) = P(S2) and P(S1) = P(S2).
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For the comparison/ranking of two or more q-ROHFRVs, we will utilize the score function.
Superior the score value of q-ROHFRV greater that value is, and smaller the score value inferior that
q-ROHFRV is. We will use the accuracy function when the score values are equal.

Definition 12. [4] The score function for q-ROHFRV P(S) = (P(S),P(S)) = ((ð,B), (ð,B)) is given
as;

a(P(S)) =
1
4

 2 + 1
MH

∑
µi∈ðhP(S)

{
µi

}
+ 1

NH

∑
µi∈ðh

P(S)
{µi} −

1
MH

∑
νi∈BhP(S)

(νi) − 1
MH

∑
νi∈Bh

P(S)
(νi)

 ,
The accuracy function for q-ROHFRV P(S) = (P(S),P(S)) = ((ð,B), (ð,B)) is given as;

ACP(S) =
1
4

 1
MH

∑
µi∈ðh

P(S)
(µi) + 1

MH

∑
µi∈ðh

P(S)
(µi)+

1
MH

∑
νi∈BhP(S)

(νi) + 1
MH

∑
νi∈Bh

P(S)
(νi)

 ,
where MH and NH represent the number of elements in ðhg and Bhg respectively.

Definition 13. Suppose P(S1) = (P(S1),P(S1)) and P(S2) = (P(S2),P(S2)) are two q-ROHFRVs.
Then
(1) If a(P(S1)) > a(P(S2)), then P(S1) > P(S2),
(2) If a(P(S1)) ≺ a(P(S2)), then P(S1) ≺ P(S2),
(3) If a(P(S1)) = a(P(S2)), then
(a) If ACP(S1) > ACP(S2) then P(S1) > P(S2),
(b) If ACP(S1) ≺ ACP(S2) then P(S1) ≺ P(S2),
(c) If ACP(S1) = ACP(S2) then P(S1) = P(S2).

3. q-rung orthopair hesitant fuzzy rough aggregation operators

Herein, we introduce new idea of q-ROHF rough aggregation operators by embedding the notions of
rough sets and q-ROHF aggregation operators to get aggregation concepts of q-ROHFRWA operators.
Some essential features of these concepts are discussed.

Definition 14. Consider the collection P(Si) = (P(Si),P(Si)) (i = 1, 2, 3, ..., n) of q-ROHFRVs along
weight vector w = (w1,w2, ...wn)T such that

∑n
i=1 wi = 1 and 0 ≤ wi ≤ 1. The q-ROHFRWA operator is

determined as

q − ROHFRWA (P(S1),P(S2), ...,P(Sn)) =

 n∑
i=1

wiP(Si),
n∑

i=1

wiP(Si)

 .
Theorem 1. Let P(Si) = (P(Si),P(Si)) (i = 1, 2, 3, ...n) be the collection of q-ROHFRVs along weight
vector w = (w1,w2, ...wn)T . Then the q-ROHFRWA operator is defined as;

q − ROHFRWA (P(S1),P(S2), ...P(Sn))

=

 n∑
i=1

wiP(Si),
n∑

i=1

wiP(Si)
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=


⋃

µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)wi

⋃
µi∈ðh

P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

n∏
i=1

(νi)
wi


Proof. Utilizing mathematical induction to find the the desired proof. Using the operational law, it
follows that

P(S1) ⊕ P(S2) =
[
P(S1) ⊕ P(S2),P(S1) ⊕ P(S2)

]
and

γP(S1) =
(
γP(S1), γP(S1)

)
If n = 2, then

q − ROHFRWA (P(S1),P(S2))

=

 2∑
i=1

wiP(Si),
2∑

i=1

wiP(Si)



=



 ⋃
µi∈ðhP(S)

q

√(
1 −

2∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

2∏
i=1

(
νi

)wi

 ⋃
µi∈ðh

P(S)

q

√(
1 −

2∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

2∏
i=1

(νi)
wi




The result is true for n = 2. Let it is true for n = k, that is,

q − ROHFRWA (P(S1),P(S2), ...P(Sk))

=

 k∑
i=1

wiP(Si),
k∑

i=1

wiP(Si)



=



 ⋃
µi∈ðhP(S)

q

√(
1 −

k∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

k∏
i=1

(
νi

)wi

 ⋃
µi∈ðh

P(S)

q

√(
1 −

k∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

k∏
i=1

(νi)
wi




Now, we have to show that it is true for n = k + 1, we have

q − ROHFRWA (P(S1),P(S2), ...P(Sk+1))

=


(∑k

i=1 wiP (Si) ⊕ wk+1P(Sk+1)
)
,(∑k

i=1 wiP (Si) ⊕ wk+1P(Sk+1)
) 

=



 ⋃
µi∈ðhP(S)

q

√(
1 −

k+1∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

k+1∏
i=1

(
νi

)wi

 ⋃
µi∈ðh

P(S)

q

√(
1 −

k+1∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

k+1∏
i=1

(νi)
wi




.
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Thus the required result is true for n = k + 1. Hence, the result is true for all n ≥ 1. From the above
analysis P(S) and P(S) are q-ROHFRVs. So,

∑k
i=1 wiP (Si) and

∑k
i=1 wiP (Si) are also q-ROHFRVs.

Therefore, q-ROHFRWA (P(S1),P(S2), ...P(Sn)) is a q-ROHFRV under q-ROHF approximation space
(ℵ,P) . �

Theorem 2. Consider the collection P(Si) = (P(Si),P(Si)) (i = 1, 2, 3, ..., n) of q-ROHFRVs with
weight vectors w = (w1,w2, ...wn)T such that

∑n
i=1 wi = 1 and 0 ≤ wi ≤ 1. Then q-ROHFRWA operator

satisfy the following properties:
(1) Idempotency: If P(Si) = G(S) for (i = 1, 2, 3, ..., n) , where G(S) =

(
G(S),G(S)

)
=

(
(b, d), (b, d)

)
.

Then
q − ROHFRWA (P(S1),P(S2), ...P(Sn)) = G(S).

(2) Boundedness: Let (P(S))− =

(
min

i
P (Si) ,max

i
P(Si)

)
and (P(S))+ =

(
max

i
P (Si) ,min

i
P(Si)

)
. Then

(P(S))− ≤ q − ROHFRWA (P(S1),P(S2), ...,P(Sn)) ≤ (P(S))+ .

(3) Monotonicity: Suppose G(S) =
(
G(Si),G(Si)

)
(i = i, 2, ..., n) be another collection of q-ROHFRVs

such that G(Si) ≤ P (Si) and G(Si) ≤ P(Si). Then

q − ROHFRWA (G(S1),G(S2), ...,G(Sn)) ≤ q − ROHFRWA (P(S1),P(S2), ...P(Sn)) .

(4) Shiftinvariance: Consider another q-ROHFRV G(S) =
(
G(S),G(S)

)
=

(
(b, d), (b, d)

)
. Then

q − ROHFRWA (P(S1) ⊕ G(S),P(S2) ⊕ G(S), ...,P(Sn) ⊕ G(S)) =

q − ROHFRWA (P(S1),P(S2), ...P(Sn)) ⊕ G(S).

(5) Homogeneity: For any real number γ > 0;

q − ROHFRWA (γP(S1), γP(S2), ..., γP(Sn)) = γ · q − ROHFRWA (P(S1),P(S2), ...,P(Sn)) .

(6) Commutativity: Suppose P
′

(Si) =
(
P
′ (Si) ,P

′(Si)
)

and P(Si) = (P(Si),P(Si)), (i = 1, 2, 3, ..., n)
is a collection of q-ROHFRVs. Then

q − ROHFRWA (P(S1),P(S2), ...,P(Sn)) = q − ROHFRWA
(
P
′

(S1),P
′

(S2), ...,P
′

(Sn)
)
.

Proof. (1) Idempotency: As P(Si) = G(S) (for all i = 1, 2, 3, ..., n) where G(Si) =
(
G(S),G(S)

)
=(

(bi, di), (bi, di)
)

q − ROHFRWA (P(S1),P(S2), ...,P(Sn))

=
(∑n

i=1
wiP (Si) ,

∑n

i=1
wiP(Si)

)

=


⋃

µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)wi

⋃
µi∈ðh

P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

n∏
i=1

(νi)
wi
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for all i, P(Si) = G(S) =
(
G(S),G(S)

)
=

(
(bi, di), (di, ei)

)
. Therefore,

=


⋃

bi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
bi

)q)wi

)
,

⋃
di∈BhP(S)

n∏
i=1

(
di

)wi

⋃
bi∈ðh

P(S)

q

√(
1 −

n∏
i=1

(
1 −

(
bi

)q)wi

)
,

⋃
di∈Bh

P(S)

n∏
i=1

(
di

)wi


=

[(
1 −

(
1 − bi

)
, bi

)
,
(
1 −

(
1 − di

)
, bi

)]
=

(
G(S),G(S)

)
= G(S).

Hence q-ROHFRWA(P(S1),P(S2), ...P(Sn)) = G(S).
(2) Boundedness: As (

P (S)
)−

=

[(
min

i
{µi},max

i

{
νi

})
,
(
min

i
{µi},max

i
{νi}

)]
(
P (S)

)+
=

[(
max

i
{µi},min

i

{
νi

})
,
(
max

i
{µi},min

i
{νi}

)]
and P(Si) =

[(
ði,Bi

)
,
(
ði,Bi

)]
. To prove that

(P(S))− ≤ q − ROHFRWA (P(S1),P(S2), ...,P(Sn)) ≤ (P(S))+ .

Since for each i = 1, 2, 3, ..., n, it follows that

min
i
{µi} ≤ {µi} ≤ max

i
{µi} ⇐⇒ 1 −max

i
{µi} ≤ 1 − {µi} ≤ 1 − {µi}

⇐⇒

n∏
i=1

(
1 −max

i
{µi}

)wi

≤

n∏
i=1

(
1 − {µi}

)wi
≤

n∏
i=1

(
1 −min

i
{µi}

)wi

⇐⇒

(
1 −max

i
{µi}

)
≤

n∏
i=1

(
1 − {µi}

)wi
≤

(
1 −min

i
{µi}

)
⇐⇒ 1 −

(
1 −min

i
{µi}

)
≤ 1 −

n∏
i=1

(
1 − {µi}

)wi
≤ 1 −

(
1 −max

i
{µi}

)
Hence

min
i
{µi} ≤ 1 −

n∏
i=1

(
1 − {µi}

)wi
≤ max

i
{µi} (3.1)

Next for each i = 1, 2, 3, ..., n, we have

min
i

{
νi

}
≤

{
νi

}
≤ max

i

{
νi

}
⇐⇒

n∏
i=1

(
min

i

{
νi

})wi

≤

n∏
i=1

(
νi

)wi

≤

n∏
i=1

(
max

i

{
νi

})wi

.

This imples that

min
i

{
νi

}
≤

n∏
i=1

{
νi

}wi

≤ max
i

{
νi

}
. (3.2)
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Likewise, we can present that

min
i
{µi} ≤

n∏
i=1

{µi}
wi
≤ max

i
{µi} (3.3)

and

min
i
{νi} ≤

n∏
i=1

{νi}
wi
≤ max

i
{νi} . (3.4)

So from Equations (3.1) , (3.2) , (3.3) and (3.4) we have(
P (S)

)−
=

[(
min

i
{µi},max

i

{
νi

})
,
(
min

i
{µi},max

i
{νi}

)]
.

(3) Monotonicity: Since G(S) =
(
G(Si),G(Si)

)
=

((
b, d

)
,
(
b, d

))
and P(Si) =

(
P (Si) ,P(Si)

)
to show

that G(Si) ≤ P (Si) and G(Si) ≤ P(Si) (for i = 1, 2, 3, ..., n), so

bi ≤ µi ⇒ 1 − bi ≤ 1 − µi ⇒

n∏
i=1

(
1 − µi

)wi
≤

n∏
i=1

(
1 − bi

)wi

⇒ 1 −
n∏

i=1

(
1 − bi

)wi
≤ 1 −

n∏
i=1

(
1 − µi

)wi
(3.5)

next

di ≥ νi ⇒

n∏
i=1

dwi
i ≥

n∏
i=1

νi
wi . (3.6)

Likewise, we can show that

1 −
n∏

i=1

(
1 − bi

)wi
≤ 1 −

n∏
i=1

(1 − µi)
wi (3.7)

n∏
i=1

(
bi j

)wi
≥

n∏
i=1

(
νi j

)wi
(3.8)

Hence from Equations (3.5), (3.6), (3.7) and (3.8), we get G(Si) ≤ P (Si) and G(Si) ≤ P(Si).
Therefore,

q − ROHFRWA (G(S1),G(S2), ...,G(Sn)) ≤ q − ROHFRWA (P(S1),P(S2), ...P(Sn)) .

(4) Shiftinvariance: As G(S) =
(
G(S),G(S)

)
=

(
(bi, di), (bi, di)

)
is a q-ROHFRV and P(Si) =(

P (Si) ,P(Si)
)

=
[(
ði,Bi

)
,
(
ði,Bi

)]
is the collection of q-ROHFRVs, so

P(S1) ⊕ G(S) =
[
P (S1) ⊕ G(S),P(Si) ⊕ G(S)

]
.

As ((
1 −

(
1 − µi

) (
1 − di

)
, νidi

)
,
(
1 − (1 − µi)

(
1 − di

)
, νidi

))
.
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Thus, q-ROHFRV G(S) =
(
G(S),G(S)

)
=

(
(bi, di), (bi, di)

)
. It follows that

q − ROHFRWA (P(S1) ⊕ G(S),P(S2) ⊕ G(S), ...,P(Sn) ⊕ G(S))

=
[∑n

i=1
wiP (Si) ⊕ G(S),

∑n

i=1
wi

(
P(Si) ⊕ G(S)

)]

=




⋃

µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)wi (
1 − bi

)wi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)wi

d
wi

i


,


⋃

µi∈ðh
P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)wi

) (
1 − bi

)wi
,

⋃
νi∈Bh

P(S)

di

n∏
i=1

(νi)
wi





=




⋃

µi∈ðhP(S)

q

√(
1 −

(
1 − b

) n∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

d
n∏

i=1

(
νi

)wi


,


⋃

µi∈ðh
P(S)

q

√(
1 − b

) (
1 −

n∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

d
n∏

i=1
(νi)

wi





=






⋃

µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)wi

 ⊕
(
bi, di

)

,




⋃

µi∈ðh
P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

n∏
i=1

(νi)
wi

 ⊕
(
bi, di

)




=




⋃

µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)wi

 ,
⋃

µi∈ðh
P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

n∏
i=1

(νi)
wi




⊕

[(
bi, di

)
,
(
bi, di

)]
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= q − ROHFRWA (P(S1),P(S2), ...,P(Sn)) ⊕ G(S).

(5) Homogeneity: For real number γ > 0 and P(Si) =
(
P (Si) ,P(Si)

)
be a q-ROHFRVs. Consider

γP(Si) =
(
γP (Si) , γP(Si)

)

=



 ⋃
µi∈ðhP(S)

(
q
√(

1 −
(
1 − µi

q
)γ))

,
⋃

νi∈BhP(S)

(
νi

γ
) , ⋃

µi∈ðh
P(S)

(
q
√(

1 −
(
1 − µi

q)γ)) , ⋃
νi∈BhP(S)

(
ν
γ

i

)


Now

q − ROHFRWA (γP(S1), γP(S2), ..., γP(Sn))

=



 ⋃
µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)γ)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)γ , ⋃
µi∈ðh

P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)γ), ⋃
νi∈BhP(S)

n∏
i=1

(νi)
γ




= γq − ROHFRWA (P(S1),P(S2), ...,P(Sn)) .

(6) Commutativity: Suppose

q − ROHFRWA (P(S1),P(S2), ...,P(Sn))

=
[∑n

i=1
γiP(Si),

∑n

i=1
γiP(Si)

]

=



 ⋃
µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)γi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)γi

 , ⋃
µi∈ðh

P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)γi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(νi)
γi




,

Let
(
P
′

(S1),P
′

(S2), ...,P
′

(Sn)
)

be a permutation of (P(S1),P(S2), ...,P(Sn)) . Then we have P(Si) =

P
′

(Si)(i = 1, 2, 3, ..., n)

=



 ⋃
µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µ
′

i

)q)γi
)
,

⋃
νi∈BhP(S)

n∏
i=1

(
ν
′

i

)γi

 , ⋃
µi∈ðh

P(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µ
′

i

)q)γi
)
,

⋃
νi∈BhP(S)

n∏
i=1

(
ν
′

i

)γi




,

=
[∑n

i=1
γiP

′

(Si),
∑n

i=1
γiP

′(Si)
]

= q − ROHFRWA
(
P
′

(S1),P
′

(S2), ...,P
′

(Sn)
)
.

Proved. �
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4. Improved q-ROHFR-VIKOR methodology

Here, we developed an algorithm for addressing uncertainty in multi-attribute group decision
making (MAGDM) under q-rung orthopair hesitant fuzzy rough information. Consider a DM problem
with {[1, [2, ..., [n} a set of n alternatives and a set of attributes {c1, c2, ..., cn} with (w1,w2, ...,wn)T the
weights, that is, wi ∈ [0, 1],

∑n
i=1 wi = 1. To test the reliability of kth alternative [i under the the attribute

ci, let be a set of decision makers (DMs)
{
D̊1, D̊2, ..., D̊ ̂

}
and (%1, %2, ..., %i)T be DMs weights such that

%i ∈ [0, 1],
∑n

i=1 %i = 1. The expert evaluation matrix is described as:

M =
[
P(S ̂

i j)
]

m×n

=



(
P(S11),P(S11)

) (
P(S12),P(S12)

)
· · ·

(
P(S1 j),P(S1 j)

)(
P(S21),P(S21)

) (
P(S22),P(S22)

)
· · ·

(
P(S2 j),P(S2 j)

)(
P(S31),P(S31)

) (
P(S32),P(S32)

)
· · ·

(
P(S3 j),P(S3 j)

)
...

...
. . .

...(
P(Si1),P(Si1)

) (
P(Si2),P(Si2)

)
· · ·

(
P(Si j),P(Si j)

)


,

where P(Si j) =
{〈
[, ðh

P(S)
([),Bh

P(S)
([)

〉
|[ ∈ ℵ

}
and P(S) =

{〈
[, ðhP(S)([),BhP(S)([)

〉
|[ ∈ ℵ

}
such that 0 ≤(

max(ðh
P(S)

([))
)q

+
(
min(Bh

P(S)
([))

)q
≤ 1 and 0 ≤

(
min(ðhP(S)([)

)q
+
(
max(BhP(S)([))

)q
≤ 1 are the q-ROHF

rough values. The main steps for MAGDM are as follows:

Step-1 Construct the experts evaluation matrices as:

(E) ̂ =



(
P(S ̂

11),P(S ̂

11)
) (
P(S ̂

12),P(S ̂

12)
)
· · ·

(
P(S ̂

1 j),P(S ̂

1 j)
)(

P(S ̂

21),P(S ̂

21)
) (
P(S ̂

22),P(S ̂

22)
)
· · ·

(
P(S ̂

2 j),P(S ̂

2 j)
)(

P(S ̂

31),P(S ̂

31)
) (
P(S ̂

32),P(S ̂

32)
)
· · ·

(
P(S ̂

3 j),P(S ̂

3 j)
)

...
...

. . .
...(

P(S ̂

i1),P(S ̂

i1)
) (

P(S ̂

i2),P(S ̂

i2)
)
· · ·

(
P(S ̂

i j),P(S ̂

i j)
)


where ̂ represents the number of expert.

Step-2 Evaluate the normalized experts matices (N) ̂ , as

(N) ̂ =


P(Si j) =

(
P

(
Si j

)
,P

(
Si j

))
=

((
µi j, νi j

)
,
(
µi j, νi j

))
if For benefit(

P(Si j)
)c

=
((
P

(
Si j

))c
,
(
P

(
Si j

))c)
=

((
νi j, µi j

)
,
(
νi j, µi j

))
if For cost

Step-3 Compute the collected q-rung orthopair hesitant fuzzy rough information of decision makers
using the q-ROHFRWA aggregation operators.

q − ROHFRWA (P(S1),P(S2), ...P(Sn))

=

 n∑
i=1

wiP(Si),
n∑

i=1

wiP(Si)
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=


⋃

µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)wi

⋃
µi∈ðh

P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

n∏
i=1

(νi)
wi


Step-4 Determine the q-ROHFR positive ideal solutions I+ and the q-ROHFR negative ideal solutions

I−as follows:

I+ =
(
$+

1 , $
+
2 , $

+
3 , ..., $

+
n
)

=

(
max

i
$i1,max

i
$i2,max

i
$i3, ...,max

i
$in.

)
,

I+ =
(
$−1 , $

−
2 , $

−
3 , ..., $

−
n
)

=

(
min

i
$i1,min

i
$i2,min

i
$i3, ...,min

i
$in.

)
Step-5 Our next goal is to calculate the q-ROHFR group utility measure S i(i = 1, 2, 3, 3, ..., n) and

the regret measure Ri(i = 1, 2, 3, 3, ..., n) of all alternatives L = (A1, A2, A3, ..., An) by using the
following formulas.

S i =

n∑
j=1

w jd
(
$i j, $

+
j

)
d
(
$+

j , $
−
j

) , i = 1, 2, 3, 3, ...m.

Ri = max
w jd

(
$i j, $

+
j

)
d
(
$+

j , $
−
j

) , i = 1, 2, 3, 3, ...m

Step-6 Now, we identify the S and R maximum and minimum values as follows:

S # = min
i

S i, S ∗ = max
i

S i, R# = min
i

Ri, R∗ = max
i

Ri, i = 1, 2, 3, ...n,

Finally, to evaluate the ranking measure Qi for the alternative L = (A1, A2, A3, ..., An), we combine
the feature of the group utility S i and individual regret Ri as follows:

Qi = τ
S i − S #

S ∗ − S # + (1 − τ)
Ri − R#

R∗ − R# ,Ri, i = 1, 2, 3, 3, ...n,

where τ is the strategy weight of most of the parameters (maximum group utility) and plays a
crucial role in the evaluation of the compromise solution. The value is taken from the uni interval
[0, 1], but 0.5 is generally taken.

Step-7 Further, with respect to group utility measure S i, individual regret measure Ri and ranking
measure Qi, the alternatives are ranked in descending order. Here, we get three ranking lists that
are useful in determining the compromise solution.

5. Numerical application

In this section, we propose the numerical application related to agriculture robotics to improve the
ability and capability of agriculture and presented to verifying the reliability, superiority and scientific
correctness of the established aggregation operators.
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5.1. Case study (robotic agri-farming)

Farming is the practice of cultivating crops and raising livestock. It entails both raising livestock
and cultivating crops for agricultural goods. Farming has been practised for thousands of years.
Agriculture is a way of life rather than a profession. Without this, we would be unable to survive
in this environment, and it was also essential for the birth of human civilization. Agriculture is the
most advantageous, helpful, and dignified activity available to mankind. Human beings are born
farmers who take great pleasure in nurturing their farm, whether in their home gardens or out in the
fields. Inside houses, plants are cultivated in little mud pots; however, in the fields, individuals may
grow any kind of plant or crop. Our nation is now being dismantled under the pretence of economic
advancement, industrialisation, and the development of housing projects. and we will be required
to pay much more for our daily nutritional requirements. With increasing population, people need
more food to survive word population rate grows rapidly. Farmers have to use agriculture robots for
improving the yield of crops. Robotics in agriculture is an example of innovation that transcends
invention. Agriculture is a business, and it is anticipated to expand into a high-tech enterprise in the
contemporary era. Agricultural capabilities of farmers are increasingly growing in accordance with
technological advancements. Robotics and automation are now helping to improve yields of crops.
Robots may be used for harvesting, weeding, trimming, sowing, spraying, sorting, and packing in
agriculture. The agriculture robots are called agri-robots or agribots. An vital purpose for Agribots will
be performed in agriculture in the future. In this area, we will concentrate on a specific application: the
employment of robots in horticulture. Horticulture is the agricultural practice of cultivating material,
food, decorative, and comforting plants. A Terra Sentia is a new generation robot which is the smallest
robot having 12.5 inches height and 12.5 inches width with weight of 30 pounds. It looks like a
lawnmower, with high-resolution cameras on each side, and it navigates a field by scanning it with
laser pulses. There are several ways to visualize a field in terms of stem diameters, fruit-producing
plants, and general health and size of the plants. Additionally, it may be employed in plant breeding
research. The robot has been used in a variety of areas, including maize, wheat, strawberries, citrus,
cotton, soybean, sorghum, and almond grapes. We will examine the agricultural productivity of robots.
The attributes of robotic farming are described below:
(c1) Automation of manual tasks: When farmers adopt automation, they increase their production by
spending less time on routine tasks and more time on improvements.
(c2) High-quality production and reduced production costs: There are certain farming factors which
have an influence on the improvement of the quality of products for example, (soil, climate, ripening
period, fertilizer etc). The level of maturity and dryness are important in the production of agriculture
(barley, wheat, rice etc.). Agriculture has made a significant contribution to cost reduction via the
use of robots. We must maintain certain uncontrollable factors that reduce production costs, such as
weather conditions, seed purchases from various brands, and chemical consumption.
(c3) Completing a challenging task: Using automation to complete the challenging activity in an easy
and plain way, scientists, researchers, technologists, and farmers all agreed that the use of automation
will simplify and streamline the process.
(c4) Consistent role to complete a task/placement perfection and accuracy: In order to play a systematic
role, the farm must be operated by artificial intelligence (automate the complete agricultural process)
from sowing through harvesting. In the field, plant placement is extremely important. The accuracy
will contribute to perfection. The automation of nursing operations includes grafting, propagation, and
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spacing.

The evaluation procedure for selection of robotic agri-farming: suppose an organization wants to
assess the procedure of selecting a robotic agri-farming. They invite a panel of experts to analyze
an appropriate robotic farming. Let {A1, A2, A3, A4} be four alternatives for robotic farming, and
the penal select ideal one. Let {c1, c2, c3, c4} be the attributes of each alternative based on the
influencing factors determined as follows: automation of manual tasks (c1), high-quality production
and reduced production costs (c2), completing a challenging task (c3) and consistent role to complete
a task/placement perfection and accuracy (c4) of robotic agri-farming. Because of the uncertainty, the
DMs’ selection information is presented as q-ROHFR information. The considered attribute weight
vector is w = (0.18, 0.25, 0.31, 0.26)T and DM experts weight vector is w = (0.23, 0.38, 0.39)T . The
following computations are carried out in order to evaluate the MCDM problem utilizing the defined
approach for evaluating alternatives:

Step-1 The information of three professional experts are evaluated in Table-2 to Table-4 using q-
ROHFRVs.

Table-2(a): Expert-1 information
c1 c2

A1

(
{(0.10, 0.20, 0.50) , (0.30, 0.40)} ,
{(0.30, 0.80, 0.90) , (0.40, 0.60)}

) (
{(0.5, 0.7, 0.9) , (0.5, 0.6, 0.8)} ,
{(0.3, 0.5, 0.6) , (0.7, 0.9)}

)
A2

(
{(0.50, 0.60, 0.70) , (0.70, 0.90)} ,
{(0.30, 0.50, 0.70) , (0.60, 0.70)}

) (
{(0.2, 0.4, 0.5) , (0.5)} ,
{(0.6, 0.7) , (0.3, 0.5, 0.9)}

)
A3

(
{(0.40, 0.50, 0.60) , (0.60, 0.70, 0.80)} ,
{(0.70, 0.80) , (0.10, 0.40, 0.70)}

) (
{(0.1) , (0.5, 0.6)} ,

{(0.4, 0.6, 0.7) , (0.5, 0.7)}

)
A4

(
{(0.6, 0.7, 0.9) , (0.3, 0.4, 0.6)} ,
{(0.2, 0.7) , (0.7, 0.8, 0.9)}

) (
{(0.3, 0.4, 0.5) , (0.4, 0.7, 0.9)} ,
{(0.1, 0.2) , (0.2, 0.3)}

)

Table-2(b): Expert-1 information
c3 c4

A1

(
{(0.2, 0.3, 0.4) , (0.3, 0.4, 0.7)} ,
{(0.1, 0.5) , (0.3, 0.5)}

) (
{(0.5, 0.6) , (0.4, 0.5, 0.7)} ,
{(0.6, 0.8, 0.9) , (0.6, 0.7, 0.9)}

)
A2

(
{(0.4, 0.5, 0.8) , (0.4, 0.5, 0.7)} ,
{(0.2, 0.5) , (0.4, 0.5)}

) (
{(0.4, 0.6, 0.8) , (0.3, 0.5)} ,
{(0.7) , (0.1, 0.3, 0.4)}

)
A3

(
{(0.3, 0.6, 0.7) , (0.5, 0.7, 0.8)} ,
{(0.5, 0.9) , (0.5, 0.8)}

) (
{(0.3, 0.6) , (0.5, 0.6, 0.8)} ,
{(0.1, 0.3, 0.7) , (0.3, 0.4)}

)
A4

(
{(0.3, 0.4, 0.5) , (0.7, 0.8, 0.9)} ,
{(0.6, 0.7) , (0.4, 0.7)}

) (
{(0.2, 0.3, 0.4) , (0.5, 0.6, 0.9)} ,
{(0.3, 0.4) , (0.7, 0.8)}

)
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Table-3(a): Expert-2 information
c1 c2

A1

(
({0.2, 0.3, 0.4} , {0.2, 0.5}) ,

({0.4, 0.6} , {0.2, 0.5})

) (
({0.4, 0.5, 0.6} , {0.3, 0.7, 0.8}) ,
({0.2, 0.7, 0.8} , {0.2, 0.8, 0.9})

)
A2

(
({0.1, 0.3, 0.4} , {0.5, 0.8}) ,

({0.5, 0.6} , {0.8, 0.9})

) (
({0.3, 0.4, 0.6} , {0.7, 0.8}) ,
({0.1, 0.5} , {0.3, 0.7, 0.8})

)
A3

(
({0.6, 0.7, 0.8} , {0.3, 0.4}) ,

({0.3, 0.8, 0.9} , {0.2, 0.5, 0.7})

) (
({0.3, 0.4, 0.5} , {0.4, 0.7, 0.9}) ,
({0.4, 0.6, 0.7} , {0.7, 0.8, 0.9})

)
A4

(
({0.1, 0.2, 0.3} , {0.5, 0.7}) ,

({0.2, 0.4} , {0.7, 0.8})

) (
({0.5, 0.7, 0.8} , {0.3, 0.5, 0.7}) ,
({0.3, 0.4, 0.6} , {0.4, 0.5, 0.7})

)
Table-3(b): Expert-2 information
c3 c4

A1

(
({0.2, 0.4} , {0.3, 0.5}) ,

({0.4, 0.7, 0.8} , {0.2, 0.6})

) (
({0.1, 0.2} , {0.4, 0.6}) ,
({0.2, 0.5} , {0.7, 0.9})

)
A2

(
({0.3, 0.5, 0.7} , {0.2, 0.6}) ,
({0.6, 0.7, 0.8} , {0.2, 0.8})

) (
({0.2, 0.3} , {0.4, 0.6, 0.7}) ,

({0.1, 0.3, 0.5} , {0.2, 0.3, 0.5})

)
A3

(
({0.5, 0.6, 0.7} , {0.3, 0.5}) ,

({0.7, 0.8, 0.9} , {0.2, 0.3, 0.5})

) (
({0.2, 0.7, 0.8} , {0.2, 0.7}) ,
({0.1, 0.2} , {0.5, 0.6, 0.7})

)
A4

(
({0.6, 0.7, 0.9} , {0.2, 0.5}) ,

({0.6, 0.9} , {0.2, 0.5})

) (
({0.3, 0.5} , {0.4, 0.6, 0.7}) ,

({0.2, 0.3, 0.6} , {0.4, 0.5, 0.7})

)
Table-4(a): Expert-3 information
c1 c2

A1

(
({0.4, 0.7, 0.9} , {0.3, 0.6, 0.8}) ,
({0.2, 0.3, 0.8} , {0.7, 0.8, 0.9})

) (
({0.4, 0.7, 0.8} , {0.7, 0.8}) ,
({0.3, 0.5, 0.6} , {0.7, 0.8})

)
A2

(
({0.1, 0.3, 0.4} , {0.5, 0.6, 0.9}) ,
({0.2, 0.3, 0.7} , {0.2, 0.6, 0.8})

) (
({0.2, 0.3, 0.7} , {0.3, 0.8, 0.9}) ,
({0.1, 0.5, 0.8} , {0.2, 0.7, 0.8})

)
A3

(
({0.2, 0.3, 0.5} , {0.4, 0.8, 0.9}) ,

({0.1, 0.8, 0.9} , {0.4, 0.7})

) (
({0.2, 0.3, 0.8} , {0.2, 0.8}) ,
({0.5, 0.8, 0.9} , {0.2, 0.9})

)
A4

(
({0.1, 0.5, 0.7} , {0.5, 0.8}) ,
({0.3, 0.5, 0.7} , {0.4, 0.9})

) (
({0.2, 0.3} , {0.5, 0.6}) ,

({0.3, 0.8, 0.9} , {0.7, 0.8, 0.9})

)
Table-4(b): Expert-3 information
c3 c4

A1

(
({0.2, 0.3, 0.8} , {0.5, 0.6, 0.7}) ,
({0.3, 0.5, 0.6} , {0.2, 0.8, 0.9})

) (
({0.2, 0.3, 0.7} , {0.2, 0.3, 0.7}) ,

({0.2, 0.3, 0.8} , {0.5, 0.7})

)
A2

(
({0.1, 0.3, 0.6} , {0.4, 0.6, 0.8}) ,
({0.6, 0.7, 0.9} , {0.3, 0.8, 0.9})

) (
({0.1, 0.2, 0.3} , {0.2, 0.5}) ,
({0.3, 0.4, 0.6} , {0.1, 0.2})

)
A3

(
({0.1, 0.2, 0.3} , {0.3, 0.5, 0.9}) ,
({0.2, 0.3, 0.4} , {0.2, 0.4, 0.6})

) (
({0.2, 0.8, 0.9} , {0.1, 0.2}) ,
({0.2, 0.4, 0.5} , {0.7, 0.8})

)
A4

(
({0.2, 0.3, 0.7} , {0.8, 0.9}) ,

({0.2, 0.3, 0.8} , {0.1, 0.2, 0.3})

) (
({0.2, 0.3, 0.8} , {0.2, 0.3}) ,
({0.3, 0.5, 0.8} , {0.4, 0.5})

)
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Step-2 All the experts information are benefit type. So in this case, we do not need to normalize the
q-ROHFRVs.

Step-3 Cumulative the collective information of three professional expert using q-ROHFRWA
aggregation operator is evaluated in Table-5;

Table-5(a): Collective aggregated q-ROHFR information
c1 c2

A1


(
{0.2402, 0.5445, 0.7558} ,
{0.2572, 0.5100, 0.8403}

)
,(

{0.3239, 0.6173, 0.7607} ,
{0.2748, 0.6263, 0.9597}

)



(
{0.4280, 0.6443, 0.6630} ,
{0.4695, 0.7117, 0.9500}

)
,(

{0.2706, 0.5993, 0.7281} ,
{0.3823, 0.7758, 0.9378}

)


A2


(
{0.3141, 0.4201, 0.3675} ,
{0.5214, 0.6935, 0.9211}

)
,(

{0.3880, 0.5004, 0.6121} ,
{0.4361, 0.8113, 0.9597}

)



(
{0.2481, 0.3678, 0.6295} ,
{0.4656, 0.8421, 0.9597}

)
,(

{0.3807, 0.4606, 0.6249} ,
{0.2561, 0.6479, 0.8220}

)


A3


(
{0.4716, 0.5668, 0.6816} ,
{0.3936, 0.5962, 0.9211}

)
,(

{0.4670, 0.7515, 0.9194} ,
{0.2235, 0.5416, 0.8045}

)



(
{0.2391, 0.3276, 0.6554} ,
{0.3213, 0.8005, 0.9608}

)
,(

{0.4453, 0.7036, 0.8086} ,
{0.3975, 0.8123, 0.9608}

)


A4


(
{0.3807, 0.5202, 0.6726} ,
{0.4446, 0.6484, 0.8891}

)
,(

{0.2491, 0.4204, 0.5326} ,
{0.5627, 0.8376, 0.9761}

)



(
{0.3880, 0.5532, 0.6396} ,
{0.3912, 0.5800, 0.8523}

)
,(

{0.2762, 0.6417, 0.7634} ,
{0.4242, 0.5340, 0.8381}

)


Table-5(b): Collective aggregated q-ROHFR information
c3 c4

A1


(
{0.2000, 0.3455, 0.6345} ,
{0.3661, 0.5100, 0.8016}

)
,(

{0.3283, 0.5993, 0.6738} ,
{0.2195, 0.6437, 0.9597}

)



(
{0.3228, 0.4068, 0.5780} ,
{0.2329, 0.5359, 0.9212}

)
,(

{0.3921, 0.5873, 0.7607} ,
{0.5925, 0.7701, 0.9761}

)


A2


(
{0.2950, 0.4448, 0.6998} ,
{0.3074, 0.5754, 0.8445}

)
,(

{0.6105, 0.7212, 0.8155} ,
{0.2748, 0.7180, 0.9597}

)



(
{0.2644, 0.4064, 0.5441} ,
{0.2857, 0.5359, 0.8732}

)
,(

{0.4674, 0.3288, 0.5137} ,
{0.1301, 0.2561, 0.6224}

)


A3


(
{0.3880, 0.5279, 0.7000} ,
{0.4946, 0.6794, 0.9500}

)
,(

{0.5603, 0.7618, 0.8142} ,
{0.1884, 0.3209, 0.4805}

)



(
{0.2315, 0.7310, 0.8155} ,
{0.1884, 0.4145, 0.9500}

)
,(

{0.1552, 0.3256, 0.5170} ,
{0.5069, 0.6115, 0.8732}

)


A4


(
{0.4593, 0.5532, 0.7930} ,
{0.4581, 0.7006, 0.9761}

)
,(

{0.4064, 0.5657, 0.8142} ,
{0.1790, 0.3779, 0.6253}

)



(
{0.2481, 0.4030, 0.6345} ,
{0.3213, 0.4579, 0.8523}

)
,(

{0.2706, 0.4212, 0.6774} ,
{0.4549, 0.5571, 0.8732}

)
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Step-4 The q-ROHFR positive ideal solutions I+ and the q-ROHFR negative ideal solutions I− are
calculated in Table-6:

Table-6: Ideal solutions
Criteria I+ I−

c1


(
{0.3807, 0.5202, 0.6726} ,
{0.4446, 0.6484, 0.8891}

)
,(

{0.2491, 0.4204, 0.5326} ,
{0.5627, 0.8376, 0.9761}

)



(
{0.3141, 0.4201, 0.3675} ,
{0.5214, 0.6935, 0.9211}

)
,(

{0.3880, 0.5004, 0.6121} ,
{0.4361, 0.8113, 0.9597}

)


c2


(
{0.2481, 0.3678, 0.6295} ,
{0.4656, 0.8421, 0.9597}

)
,(

{0.3807, 0.4606, 0.6249} ,
{0.2561, 0.6479, 0.8220}

)



(
{0.2391, 0.3276, 0.6554} ,
{0.3213, 0.8005, 0.9608}

)
,(

{0.4453, 0.7036, 0.8086} ,
{0.3975, 0.8123, 0.9608}

)


c3


(
{0.4593, 0.5532, 0.7930} ,
{0.4581, 0.7006, 0.9761}

)
,(

{0.4064, 0.5657, 0.8142} ,
{0.1790, 0.3779, 0.6253}

)



(
{0.2950, 0.4448, 0.6998} ,
{0.3074, 0.5754, 0.8445}

)
,(

{0.6105, 0.7212, 0.8155} ,
{0.2748, 0.7180, 0.9597}

)


c4


(
{0.2644, 0.4064, 0.5441} ,
{0.2857, 0.5359, 0.8732}

)
,(

{0.4674, 0.3288, 0.5137} ,
{0.1301, 0.2561, 0.6224}

)



(
{0.3228, 0.4068, 0.5780} ,
{0.2329, 0.5359, 0.9212}

)
,(

{0.3921, 0.5873, 0.7607} ,
{0.5925, 0.7701, 0.9761}

)


Step-5 The q-ROHFR group utility measure S i(i = 1, 2, 3, 4) and the regret measure Ri(i = 1, 2, 3, 3, 4)
of consider alternatives are evaluated in Table-7.

Table-7: S i, Ri, Qi for each alternatives
alternatives S i Ri Qi

A1 1.0520 0.3599 0.9918
A2 0.4900 0.3099 0.5000
A3 1.3689 0.4050 1.2319
A4 0.7422 0.3421 0.6588

Step-6 & 7 Alternative ranking with respect to group utility measure S i, individual regret measure Ri

and ranking measure Qi is given in Table-8.

Table-8: Ranking of alternative based on S i, Ri, Qi

alternatives Ranking position by S i Ranking position by Ri Ranking position by Qi

A1 2 2 2
A2 4 4 4
A3 1 1 1
A4 3 3 3

6. Comparison analysis

In this section, we intend to aggregate decision making information using q-ROHFR weighted
average aggregation operators.
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6.1. q-ROHFR weighted averaging aggregation operator

The decision making methodology is thoroughly outlined as follows:

Step-1 Construct the experts evaluation matrices in the form of q-ROHFRVs.

Step-2 Computed the collected information of decision makers against their weight vector and get the
aggregated decision matrix utilizing q-ROHFRWA aggregation operator.

q − ROHFRWA (P(S1),P(S2), ...P(Sn))

=

 n∑
i=1

wiP(Si),
n∑

i=1

wiP(Si)



=


⋃

µi∈ðhP(S)

q

√(
1 −

n∏
i=1

(
1 −

(
µi

)q)wi

)
,

⋃
νi∈BhP(S)

n∏
i=1

(
νi

)wi

⋃
µi∈ðh

P(S)

q

√(
1 −

n∏
i=1

(
1 − (µi)

q)wi

)
,

⋃
νi∈Bh

P(S)

n∏
i=1

(νi)
wi


Step-3 Evaluate the aggregated q-ROHFRVs for each considered alternative with respect to the given

list of criteria/attributes by utilizing the proposed aggregation information.

Step-4 Find the ranking of alternatives based on score function as,

a(P(S)) =
1
4

 2 + 1
MH

∑
µi∈ðhP(S)

(µi) + 1
NH

∑
µi∈ðh

P(S)
(µi)

1
MH

∑
νi∈BhP(S)

(νi) − 1
MH

∑
νi∈Bh

P(S)
(νi)

 ,
Step-5 Rank all the alternative scores in descending order. The alternative having larger value will be

superior/best.

6.2. Numerical Example of decision making methodology

Here, we apply our proposed weighted average operator to MAGDM problem to determined the
best agriculture robots from the list of four reborts under four attributes given in above numerical
example.

Step-1 The collective expert information utilizing the q-ROHFRWA aggregation operator is given in
Table-5:

Step-2 Aggregation information of the alternative under the given list of attributes are evaluated using
proposed aggregation operators as follows;
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Aggregation information using q-ROHFRWA operator presented in Table-9:

Table-9: Aggregated information using q-ROHFRWA

A1

(
({0.7104, 0.8112, 0.8931} , {0.3022, 0.5443, 0.7961}) ,
({0.7397, 0.8775, 0.9408} , {0.3305, 0.6940, 0.8864})

)
A2

(
({0.6701, 0.7732, 0.8724} , {0.3456, 0.6056, 0.8199}) ,
({0.8202, 0.8277, 0.8949} , {0.2181, 0.5111, 0.7816})

)
A3

(
({0.7030, 0.9075, 0.9504} , {0.3050, 0.5818, 0.8738}) ,
({0.75920.8800, 0.9351} , {0.2928, 0.5132, 0.6773})

)
A4

(
({0.7264, 0.8142, 0.9152} , {0.3774, 0.5674, 0.8395}) ,
({0.6954, 0.8271, 0.9299} , {0.3344, 0.5108, 0.7683})

)

Step-3 & 4 Score values of all alternatives under established aggregation operators presented in Table-
10.

Table-10: Ranking of alternative

Proposed operators
Score values of alternatives

A1 A2 A3 A4
Ranking

q-ROHFRWA 0.6183 0.6314 0.6576 0.6259 A3 > A2 > A4 > A1

7. Conclusions

In this research work, q-rung orthopair hesitant fuzzy rough rough set is presented as a new hybrid
structure of the q-rung orthopair fuzzy set, the hesitant fuzzy set, and the rough set.The incorporation
of rough set theory makes this approach more flexible and effective for modelling fuzzy systems and
vital decision making under uncertainty. The algebraic t-norm and t-conorm are used to introduce
a list of aggregation operators such as q-ROHFR weighted averaging operators. Additionally, the
essential characteristics of evolved operators are described in detail. A decision-making algorithm was
developed to solve real-world decision-making problems concerning agri-farming involving imprecise
and insufficient information. The suggested technique is ideal for determining the most appropriate
kind of robotic agri-farming from a variety of possible types of agri-farming. Numerical examples
highlighted the potential applications of the MCDM technique. To demonstrate the capability,
superiority, and reliability of the suggested approaches, a comparative study of the final ranking and
best choice in robotic agri-farming determined by the proposed techniques and the q-ROHFR-VKOR
method is also provided. The established approach can be used to effectively tackle DM challenges. In
terms of future study, the innovative notion of q-ROHFRSs might be extended to establish the Yager
and Dombi t-norm and t-conorm using the generalised aggregation information.
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