Research article

On function spaces related to some kinds of weakly sober spaces

  • Received: 20 November 2021 Revised: 21 February 2022 Accepted: 24 February 2022 Published: 10 March 2022
  • MSC : 54A05, 54B20, 54C35, 54D35, 06B30

  • In this paper, we mainly study function spaces related to some kinds of weakly sober spaces, such as bounded sober spaces, $ k $-bounded sober spaces and weakly sober spaces. For $ T_{0} $ spaces $ X $ and $ Y $, it is proved that $ Y $ is bounded sober iff the function space $ {\bf{Top}}(X, Y) $ of all continuous functions $ f : X\longrightarrow Y $ equipped with the pointwise convergence topology is bounded sober iff $ {\bf{Top}}(X, Y) $ equipped with the Isbell topology is bounded sober. But for a $ k $-bounded sober space $ X $, the function space $ {\bf{Top}}(X, Y) $ equipped with the pointwise convergence topology or the Isbell topology may not be $ k $-bounded sober. It is shown that if the function space $ {\bf{Top}}(X, Y) $ equipped with the pointwise convergence topology or the Isbell topology is weakly sober (resp., a cut space), then $ Y $ is weakly sober (resp., a cut space). Relationships among some kinds of (weakly) sober spaces are also investigated.

    Citation: Xiaoyuan Zhang, Meng Bao, Xiaoquan Xu. On function spaces related to some kinds of weakly sober spaces[J]. AIMS Mathematics, 2022, 7(5): 9311-9324. doi: 10.3934/math.2022516

    Related Papers:

  • In this paper, we mainly study function spaces related to some kinds of weakly sober spaces, such as bounded sober spaces, $ k $-bounded sober spaces and weakly sober spaces. For $ T_{0} $ spaces $ X $ and $ Y $, it is proved that $ Y $ is bounded sober iff the function space $ {\bf{Top}}(X, Y) $ of all continuous functions $ f : X\longrightarrow Y $ equipped with the pointwise convergence topology is bounded sober iff $ {\bf{Top}}(X, Y) $ equipped with the Isbell topology is bounded sober. But for a $ k $-bounded sober space $ X $, the function space $ {\bf{Top}}(X, Y) $ equipped with the pointwise convergence topology or the Isbell topology may not be $ k $-bounded sober. It is shown that if the function space $ {\bf{Top}}(X, Y) $ equipped with the pointwise convergence topology or the Isbell topology is weakly sober (resp., a cut space), then $ Y $ is weakly sober (resp., a cut space). Relationships among some kinds of (weakly) sober spaces are also investigated.



    加载中


    [1] G. Bezhanishvili, J. Harding, Raney algebras and duality for $T_{0}$-spaces, Appl. Categor. Struct., 28 (2020), 963–973. http://dx.doi.org/10.1007/s10485-020-09606-w doi: 10.1007/s10485-020-09606-w
    [2] M. Bao, X. Wen, X. Xu, On two classes of $T_{0}$ spaces defined by Rudin sets, Topol. Appl., submitted for publication.
    [3] R. Engelking, General topology, Warzawa: Polish Scientific Publishers, 1989.
    [4] M. Erné, Categories of locally hypercompact spaces and quasicontinuous posets, Appl. Categor. Struct., 26 (2018), 823–854. http://dx.doi.org/10.1007/s10485-018-9536-0 doi: 10.1007/s10485-018-9536-0
    [5] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Continuous lattices and domains, Cambridge University Press, 2003. http://dx.doi.org/10.1017/CBO9780511542725
    [6] J. Goubault-Larrecq, Non-Hausdorff topology and domain theory: Selected topics in point-set topology, Vol. 22, Cambridge University Press, 2013. http://dx.doi.org/10.1017/CBO9781139524438
    [7] R. Heckmann, K. Keimel, Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor. Comput. Sci., 298 (2013), 215–232. http://dx.doi.org/10.1016/j.entcs.2013.09.015 doi: 10.1016/j.entcs.2013.09.015
    [8] J. Isbell, Completion of a construction of Johnstone, Proc. Amer. Math. Soc., 85 (1982), 333–334. http://dx.doi.org/10.1090/S0002-9939-1982-0656096-4 doi: 10.1090/S0002-9939-1982-0656096-4
    [9] P. T. Johnstone, Scott is not always sober, In: B. Banaschewski, R. E. Hoffmann, Continuous lattices, Lecture Notes in Mathematics, 871 (1981), 282–283. http://dx.doi.org/10.1007/BFb0089911
    [10] B. Liu, Q. Li, W. Ho, On function spaces related to $d$-spaces, Topol. Appl., 300 (2021), 107757. http://dx.doi.org/10.1016/j.topol.2021.107757 doi: 10.1016/j.topol.2021.107757
    [11] H. M. MacNeille, Partially ordered posets, Trans. Amer. Math. Soc., 42 (1937), 416–460.
    [12] H. Miao, Q. Li, D. Zhao, On two problems about sobriety of topological spaces, Topol. Appl., 295 (2021), 107667. http://dx.doi.org/10.1016/j.topol.2021.107667 doi: 10.1016/j.topol.2021.107667
    [13] Q. Shan, M. Bao, X. Wen, X. Xu, On almost sober spaces, Topol. Appl., 305 (2022), 107896. http://dx.doi.org/10.1016/j.topol.2021.107896 doi: 10.1016/j.topol.2021.107896
    [14] X. Wen, X. Xu, On some kinds of weakly sober spaces, Topol. Appl., 272 (2020), 107079. http://dx.doi.org/10.1016/j.topol.2020.107079 doi: 10.1016/j.topol.2020.107079
    [15] X. Xu, C. Shen, X. Xi, D. Zhao, On $T_{0}$ spaces determined by well-filtered spaces, Topol. Appl., 282 (2020), 107323. http://dx.doi.org/10.1016/j.topol.2020.107323 doi: 10.1016/j.topol.2020.107323
    [16] X. Xu, A direct approach to K-reflections of $T_{0}$ spaces, Topol. Appl., 272 (2020), 107076. http://dx.doi.org/10.1016/j.topol.2020.107076 doi: 10.1016/j.topol.2020.107076
    [17] X. Xu, On H-sober spaces and H-sobrifications of $T_{0}$ spaces, Topol. Appl., 289 (2021), 107548. http://dx.doi.org/10.1016/j.topol.2020.107548 doi: 10.1016/j.topol.2020.107548
    [18] W. Ye, X. Xu, Some properties of bounded sober spaces and bounded well-filtered spaces, Fuzzy Syst. Math., submitted for publication.
    [19] D. Zhao, T. Fan, Dcpo-completion of posets, Theor. Comput. Sci., 411 (2010), 2167–2173. http://dx.doi.org/10.1016/j.tcs.2010.02.020 doi: 10.1016/j.tcs.2010.02.020
    [20] D. Zhao, W. Ho, On topologies defined by irreducible sets, J. Log. Algebr. Methods Program., 84 (2015), 185–195. http://dx.doi.org/10.1016/j.jlamp.2014.10.003 doi: 10.1016/j.jlamp.2014.10.003
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1485) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog