Research article

A quintuple integral involving the product of Hermite polynomial $ H_{n}(\beta x) $ and parabolic cylinder function $ D_{v}(\alpha t) $: derivation and evaluation

  • Received: 15 December 2021 Revised: 21 January 2022 Accepted: 25 January 2022 Published: 14 February 2022
  • MSC : 30E20, 33-01, 33-03, 33-04, 33-33B

  • In this paper, we derive an integral transform involving the product of Hermite polynomial $ H_{n}(\beta x) $ and parabolic cylinder function $ D_{v}(\alpha t) $. These integral transforms will be evaluated in terms of Lerch function. Various formulae are also evaluated in terms of special functions to complete this paper. All the results in this paper are new.

    Citation: Robert Reynolds, Allan Stauffer. A quintuple integral involving the product of Hermite polynomial $ H_{n}(\beta x) $ and parabolic cylinder function $ D_{v}(\alpha t) $: derivation and evaluation[J]. AIMS Mathematics, 2022, 7(5): 7464-7470. doi: 10.3934/math.2022418

    Related Papers:

  • In this paper, we derive an integral transform involving the product of Hermite polynomial $ H_{n}(\beta x) $ and parabolic cylinder function $ D_{v}(\alpha t) $. These integral transforms will be evaluated in terms of Lerch function. Various formulae are also evaluated in terms of special functions to complete this paper. All the results in this paper are new.



    加载中


    [1] S. Goldstein, Operational representations of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder function, Proc. London math. Soc., s2-34 (1932), 103–125. http://dx.doi.org/10.1112/plms/s2-34.1.103 doi: 10.1112/plms/s2-34.1.103
    [2] R. S. Varma, An integral equation for the Weber-Hermite functions, Tohoku Math. J., 35 (1932), 323–325.
    [3] S. Mitra, On the squares of Weber's parabolic cylinder functions and certain integrals connected with them, Proc. Edinburgh Math. Soc., 4 (1934), 27–32. http://dx.doi.org/10.1017/S0013091500024147 doi: 10.1017/S0013091500024147
    [4] D. J. Daniel, Orthogonal representation of Weber's function using Hermite polynomials, J. Approx. Theory, 113 (2001), 156–163. http://dx.doi.org/10.1006/jath.2001.3620 doi: 10.1006/jath.2001.3620
    [5] G. A. Martynov, G. N. Sarkisov, Exact equations and the theory of liquids. V, Mol. Phys., 49 (1983), 1495–1504. http://dx.doi.org/10.1080/00268978300102111 doi: 10.1080/00268978300102111
    [6] R. Reynolds, A. Stauffer, A method for evaluating definite integrals in terms of special functions with examples, Int. Math. Forum, 15 (2020), 235–244. http://dx.doi.org/10.12988/imf.2020.91272 doi: 10.12988/imf.2020.91272
    [7] Yu. A. Brychkov, O. I. Marichev, N. V. Savischenko, Handbook of Mellin transforms, CRC Press, 2019.
    [8] I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, series and products, 6 Eds., Cambridge, MA: Academic Press, 2000.
    [9] H. M. Srivastava, T. Kim, Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic $L$-series, Russ. J. Math. Phys., 12 (2005), 241–268.
    [10] National Institute of Standards and Technology, NIST Digital Library of Mathematical Functions, 2010. Available from: https://dlmf.nist.gov/.
    [11] K. B. Oldham, J. C. Myland, J. Spanier, An atlas of functions: with equator, the atlas function calculator, 2 Eds., New York, NY: Springer, 2009. http://dx.doi.org/10.1007/978-0-387-48807-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2034) PDF downloads(68) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog