Research article

A class of lattice Boltzmann models for the Burgers equation with variable coefficient in space and time

  • Received: 11 October 2021 Revised: 30 November 2021 Accepted: 01 December 2021 Published: 22 December 2021
  • MSC : 35A07, 35A35

  • In this paper, we study the numerical results of the Burgers equation with the variable coefficient in space and time and then put forward a lattice Boltzmann model of backward difference solution of nonlinear system. The macroscopic equation is recovered by using the Chapman-Enskog method and the direct Taylor-series expansion method. These two methods can recover the same hydrodynamic equations and analyze various nonlinear systems. In particular, it is much easier to perform error analysis by using the direct Taylor method. In this study, the two methods are used to analyze the Burgers equation with variable coefficient in space and time, the numerical results are discussed and are compared with the analytical solution. The numerical results verify the effectiveness of the model. The stability of the model ensures that we can use larger time step lengths. The improvement of lattice speed can improve the computational performance of the model, and the D1Q7 lattice performance is much better than the D1Q5 lattice performance.

    Citation: Zongning Zhang, Chunguang Li, Jianqiang Dong. A class of lattice Boltzmann models for the Burgers equation with variable coefficient in space and time[J]. AIMS Mathematics, 2022, 7(3): 4502-4516. doi: 10.3934/math.2022251

    Related Papers:

  • In this paper, we study the numerical results of the Burgers equation with the variable coefficient in space and time and then put forward a lattice Boltzmann model of backward difference solution of nonlinear system. The macroscopic equation is recovered by using the Chapman-Enskog method and the direct Taylor-series expansion method. These two methods can recover the same hydrodynamic equations and analyze various nonlinear systems. In particular, it is much easier to perform error analysis by using the direct Taylor method. In this study, the two methods are used to analyze the Burgers equation with variable coefficient in space and time, the numerical results are discussed and are compared with the analytical solution. The numerical results verify the effectiveness of the model. The stability of the model ensures that we can use larger time step lengths. The improvement of lattice speed can improve the computational performance of the model, and the D1Q7 lattice performance is much better than the D1Q5 lattice performance.



    加载中


    [1] Z. N. Zhang, C. G. Li, J. Q. Dong, General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation (in Chinese), Acta Math. Sci., 41 (2021), 1283–1295. https://doi.org/10.3969/j.issn.1003-3998.2021.05.004 doi: 10.3969/j.issn.1003-3998.2021.05.004
    [2] S. Y. Chen, G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30 (1998), 329–364. https://doi.org/10.1146/annurev.fluid.30.1.329 doi: 10.1146/annurev.fluid.30.1.329
    [3] S. Succi, J. M.Yeomans, The lattice Boltzmann equation for fluid dynamics and beyond, Phys. Today, 55 (2002), 58–60. http://dx.doi.org/10.1063/1.1537916 doi: 10.1063/1.1537916
    [4] X. Y. He, L. S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56 (1997), 6811–6817. https://doi.org/10.1103/PhysRevE.56.6811 doi: 10.1103/PhysRevE.56.6811
    [5] S. Y. Chen, H. D. Chen, D. Martinez, W. Matthaeus, Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., 67 (1991), 3776–3779. https://doi.org/10.1103/PhysRevLett.67.3776 doi: 10.1103/PhysRevLett.67.3776
    [6] Y. H. Qian, D. D'Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17 (1992), 479–484. https://doi.org/10.1209/0295-5075/17/6/001 doi: 10.1209/0295-5075/17/6/001
    [7] Z. R. Qin, L. J. Meng, F. Yang, C. Y. Zhang, B. H. Wen, Aqueous humor dynamics in human eye: A lattice Boltzmann study, Math. Biosci. Eng., 18 (2021), 5006–5028. https://doi.org/10.3934/mbe.2021255 doi: 10.3934/mbe.2021255
    [8] W. Q. Hu, Y. T. Gao, Z. Z. Lan, Lattice Boltzmann model for a generalized Gardner equation with time-dependent variable coefficients, Appl. Math. Model., 46 (2017), 126–140. https://doi.org/10.1016/j.apm.2017.01.061 doi: 10.1016/j.apm.2017.01.061
    [9] Z. Z. Lan, W. Q. Hu, Y. T. Gao, General propagation lattice Boltzmann model for a variable coefficient compound KdV-Burgers equation, Appl. Math. Model., 73 (2019), 695–714. https://doi.org/10.1016/J.APM.2019.04.013 doi: 10.1016/J.APM.2019.04.013
    [10] Z. H. Chai, B. C. Shi, Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear conveection-diffusion equations: Modeling, analysis and elements, Phys. Rev. E, 102 (2020), 023306. https://doi.org/10.1103/PhysRevE.102.023306 doi: 10.1103/PhysRevE.102.023306
    [11] Q. H. Li, Z. H. Chai, B. C Shi, Lattice Boltzmann model for a class of convection-diffusion equations with variable coefficients, Comput. Math. Appl., 70 (2015), 548–561. https://doi.org/10.1016/j.camwa.2015.05.008 doi: 10.1016/j.camwa.2015.05.008
    [12] G. V. Krivovichev, Parametric schemes for the simulation of the advection process in finite-difference-based single-relaxation-time lattice Boltzmann methods, J. Comput. Sci., 44 (2020), 101151. https://doi.org/10.1016/j.jocs.2020.101151 doi: 10.1016/j.jocs.2020.101151
    [13] W. P. Hong, On Bäcklund transformation for a generalised Burgers equation and solitonic solutions, Phys. Lett. A, 268 (2000), 81–84. https://doi.org/10.1016/S0375-9601(00)00172-9 doi: 10.1016/S0375-9601(00)00172-9
    [14] F. Dubois, Equivalent partial differential equations of a lattice Boltzmann scheme, Comput. Math. Appl., 55 (2008), 1441–1449. https://doi.org/10.1016/j.camwa.2007.08.003 doi: 10.1016/j.camwa.2007.08.003
    [15] Z. H. Chai, B. C. Shi, Z. L. Guo, A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations, J. Sci. Comput., 69 (2016), 355–390. https://doi.org/10.1007/s10915-016-0198-5 doi: 10.1007/s10915-016-0198-5
    [16] Z. H. Chai, N. Z. He, Z. L. Guo, B. C. Shi, Lattice Boltzmann model for high-order nonlinear partial differential equations, Phys. Rev. E, 97 (2018), 013304. https://doi.org/10.1103/PhysRevE.97.013304 doi: 10.1103/PhysRevE.97.013304
    [17] F. F. Wu, W. P. Shi, F. Liu, A lattice Boltzmann model for the Fokker-Planck equation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2776–2790. https://doi.org/10.1016/j.cnsns.2011.11.032 doi: 10.1016/j.cnsns.2011.11.032
    [18] Y. L. Duan, L. H. Kong, M. Guo, Numerical simulation of a class of nonlinear wave equations by lattice Boltzmann method, Commun. Math. Stat., 5 (2017), 13–35. https://doi.org/10.1007/s40304-016-0098-x doi: 10.1007/s40304-016-0098-x
    [19] H. Otomo, B. M. Boghosian, F. Dubois, Efficient lattice Boltzmann models for the Kuramoto Sivashinsky equation, Comput. Fluids, 172 (2018), 683–688. https://doi.org/10.1016/j.compfluid.2018.01.036 doi: 10.1016/j.compfluid.2018.01.036
    [20] Z. L. Guo, C. G. Zheng, B. C. Shi, Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chinese Phys., 11 (2002), 366–374. https://doi.org/10.1088/1009-1963/11/4/310 doi: 10.1088/1009-1963/11/4/310
    [21] X. J. Yang, Y. B. Ge, L. Zhang, A class of high-order compact difference schemes for solving the Burgers equations, Appl. Math. Comput., 358 (2019), 394–417. https://doi.org/10.1016/j.amc.2019.04.023 doi: 10.1016/j.amc.2019.04.023
    [22] Y. R. Shi, K. P. Lu, H. J. Yang, Exact solutions to Burgers equation with variable coefficients (in Chinese), J. Lanzhou Univ. (Nat. Sci.), 41 (2005), 107–111.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2015) PDF downloads(91) Cited by(1)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog