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Abstract: In this paper, we study the numerical results of the Burgers equation with the variable
coefficient in space and time and then put forward a lattice Boltzmann model of backward difference
solution of nonlinear system. The macroscopic equation is recovered by using the Chapman-Enskog
method and the direct Taylor-series expansion method. These two methods can recover the same
hydrodynamic equations and analyze various nonlinear systems. In particular, it is much easier to
perform error analysis by using the direct Taylor method. In this study, the two methods are used
to analyze the Burgers equation with variable coefficient in space and time, the numerical results are
discussed and are compared with the analytical solution. The numerical results verify the effectiveness
of the model. The stability of the model ensures that we can use larger time step lengths. The
improvement of lattice speed can improve the computational performance of the model, and the D1Q7
lattice performance is much better than the D1Q5 lattice performance.
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1. Introduction

In this paper, Backward Difference Lattice Boltzmann (BD-LB) method is used to simulate the
Burgers equation with variable coefficient in space and time. It is very difficult to construct its
analytical solution directly for the partial differential equation (PDE) with variable coefficient in space
and time, whereas finding its numerical solution is an effective way. The traditional macroscopic
numerical simulation methods include finite difference (FD) method, finite volume (FV) method, and
finite element (FE) method. Compared with these methods, lattice Boltzmann method (LBM) is a
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mesoscopic numerical approach with many advantages, such as clear physical background, simple
algorithm, easy parallel computing, and easy to implement program and handle complex boundary
conditions [1–3].

The Boltzmann equation [4], a complex microintegral equation, is the fundamental equation of the
gas kinetics theory. The right-end term is called the collision term, which is referred to as Ω ( f ). The
existence of Ω ( f ) brings great difficulties to solve Eq (1.1).

∂ f
∂t

+ ξ ·
∂ f
∂r

+ a ·
∂ f
∂ξ

=

" (
f ′ f ′1 − f f1

)
d2

D|g| cos θdΩdξ1. (1.1)

However, the collision operators used in the LBM are generally based on the much simpler
Bhatnagar-Gross-Krook (BGK) collision operator. Chen and Qian et al. [5, 6] put forward to single-
relaxation-time lattice Boltzmann (SRT-LB) model. The model controls the speed of different particles
near the equilibrium state by using the same time relaxation coefficient.

f j

(
x + c jδt, t + δt

)
− f j(x, t) = −

1
τ

[
f j(x, t) − f eq

j (x, t)
]
, (1.2)

where c j is the discrete lattice velocity, τ stands for the relaxation time, and f eq
j represents the

distribution function of local equilibrium state.
Qin et al. [7] adds a body force term in Eq (1.2) to simulate the incompressible Navier-Stokes

flow and then investigate aqueous humor dynamics in human eye. Hu and Lan et al. [8, 9] add the
modified function hi to the Eq (1.2) to simulate the Gardner equation and KdV-Burgers equation with
time-dependent variable coefficient respectively. Chai et al. [10, 11] add the auxiliary distribution
function G j (x, t) and a source term F j (x, t), proposing a multi-relaxed time lattice Boltzmann (MRT-
LB) model to solve the Navier-Stokes equation and the convective diffusion equations. Gerasim V.
Krivovichev [12] uses the Eq (1.2) formula to analyze the parameterized higher-order finite difference
schemes of the linear advection equations. These schemes are based on a linear combinations of the
spatial approximations of the convective term at the characteristic directions.

We use a FD method to solve the PDE problems in computational mathematics, but the forward
difference format is often conditionally stable and the backward difference format is unconditionally
stable. In this paper, we do not add correction function and auxiliary function, but we adopt the
backward difference format and then rewrite the Eq (1.2) as follow:

f j(x, t) − f j

(
x − c jδt, t − δt

)
= −

1
τ

[
f j (x − ciδt, t − δt) − f eq

j

(
x − c jδt, t − δt

)]
. (1.3)

The Burgers equation with variable coefficient is generally used to simulate the formation and decay
of non-plane shock waves. The Burgers equation with the nonlinear term a(t) and the dispersion term
b(t) can simulate the propagation of long shock waves in two shallow liquids [13].

∂u
∂t

+ a(t)u
∂u
∂x

+ b(t)
∂2u
∂x2 = 0. (1.4)

It is shown in the literature that when b(t) is equal to 1, the shock wave solution reverses its velocity
and collapses after a(t) changes the critical point of its symbol. In literature, the soliton-type solutions
are constructed by using Bäcklund transformation for the given form of a(t) and b(t). But these methods
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are very difficult for solving the variable coefficient partial differential equations, and we study the
following Burgers equation with variable coefficient by using BD-LB method [14].

∂u
∂t

+ u
∂

∂x
[a(x, t)u] +

∂2

∂x2 [b(x, t)u] = 0. (1.5)

Equation (1.5) can represent a variety of physical models widely used in the fields of solid state
materials, plasmas and fluid. u is amplitude function about time t and space x. a(x, t) and b(x, t) are
both analytical functions about x and t. The subscripts represent partial derivatives.

This paper is organized as follows: In Section 2, the LB method for the Burgers equation of
variable coefficient is recovered by using both the Chapman-Enskog (CE) analysis and the direct Taylor
expansion (DTE) method. In Section 3, we first test Example 3.1 and obtain some reasonable lattice
parameters. Then we apply these parameters to other variable coefficient examples and compare the
numerical result to the analytical solution. In Section 4, we discuss the obtained results and draw a
conclusion.

2. Lattice Boltzmann model of nonlinear system

The Eq (1.3) is rewrote as follow:
f j = f eq

j,n−1 + f neq
j,n−1. (2.1)

We will use the following notations in this paper:

• f j := f j (x, t);
• f j,n−1 := f j

(
x − c jδt, t − δt

)
;

• f eq
j,n−1 := f eq

j

(
x − c jδt, t − δt

)
;

• f neq
j,n−1 :=

(
1 − 1

τ

)
( f j,n−1 − f eq

j,n−1);
• δ is the Kronecker delta;
• ∇ is first-order spatial partial derivative.

In Eq (2.1), f eq
j,n−1 is the equilibrium distribution function, f neq

j,n−1 is the non-equilibrium distribution
function. We define the macroscopic variable u as the sum of

∑
i fi.

Judging from Eq (2.1), we can get the following equation:

f j − f eq
j,n−1 = f j,n−1 − f eq

j,n−1 −
1
τ

( f j,n−1 − f eq
j,n−1). (2.2)

According to the equation proposed by Eq (1.2),

f j − f j,n−1 = −
1
τ

( f j,n−1 − f eq
j,n−1), (2.3)

and then
f eq

j,n−1 = f j,n−1 + τ( f j − f j,n−1)

= f j,n−1

[
1 + τ

f j,n − f j,n−1

f j,n−1

]
= f j,n−1

{
1 + τ

[
f j,n

f j,n−1
− 1

]}
.

(2.4)
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Equation (2.4) can be written as follow:

f eq
j = f j

{
1 + τ

[
f j,n+1

f j
− 1

]}
, (2.5)

we delimit f j,n+1 = eD j f j, where D j is the difference operator D j = ∂t + c j∇.
The Eq (2.1) can be rewritten as follow:

f j(x, t) =
[
1 + τ

(
eD j − 1

)]−1
f eq

j (x, t). (2.6)

2.1. The Chapman-Enskog analysis

In the CE expansion, the LB equation is expanded by a dimensionless parameter ε, which is
proportional the Knudsen number (Kn = λ/L), λ is the mean free path and L is the feature length.
We choose the local equilibrium distribution function in the following form [2, 10, 15–18, 20]:

f eq
j (u) = w j,0r(u) + w j,1c js(u) + w j,2

(
c2

j − c2
S ,2

)
t(u), (2.7)

we adopt the weight family w j,a selection satisfy∑
j

w j,a = 1,
∑

j

w j,ac j = 0,
∑

j

w j,ac2
j = c2

S ,a, (2.8)

here, cS ,a is the lattice sound speed and the expansion of the function, r, s, t are expanded by CE as
follows:

r =

∞∑
n=0

εnrn(u), s =

∞∑
n=0

εnsn(u), t =

∞∑
n=0

εntn(u). (2.9)

Correspondingly, the expansion of the equilibrium state distribution function is as follow:

f eq
j (u) =

∞∑
n=0

εn f (eq,l)
j (u), (2.10)

that is to say, the equilibrium state distribution function varies when it is close to the scaling limit.
We define the second moment of u in Eq (2.7) as follows:

Rn(u) =
∑

j

f (eq,n)
j , S n(u) =

∑
j

f (eq,n)
j c j, Tn(u) =

∑
j

f (eq,n)
j c2

j , (2.11)

here, j > 0 breaks the conservation of u through the collision process because Rn (u) = rn (u) and the
r0 (u) = u. In this paper, we only consider Eq (1.5) with a conservation u, so we adopt r j = 0 when
j > 0. Furthermore, we hypothesize that u is differentiable in the analysis.

For ε, the temporal and spatial scale expansion as ∂t =
∑∞

k=1 ε
k∂tk , ∇ = ε∇1, tk is expressed as k time

scales, ∇k is expressed as k space scales, respectively.

D j =

∞∑
k=1

εkD j,k, (2.12)
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in which D j,k := ∂tk + δk,1c j∇1. The solution of the Eq (2.6) can be written in the following form:

f j(x, t) =

∞∑
k=0

εk f (k)
j (x, t), (2.13)

where
f (0)

j (x, t) = f (eq,0)
j ,

f (1)
j (x, t) = − τD j,1 f (eq,0)

j + f (eq,1)
j ,

f (2)
j (x, t) = − τ

[
D j,2 −

(
τ −

1
2

)
D2

j,1

]
f (eq,0)

j − τD j,1 f (eq,1)
j + f (eq,2)

j .

(2.14)

The Burgers equation has a second-order spatial derivative. It needs to sort the ε2 by using the
formalized u, the results are summarized in Table 1 and we choose the following equation in order to
make the results equivalent to the Burgers equation.

J0 = 0, J1 = a (x, t) · u2/2, K0 = b (x, t) · u/(τ − 1/2). (2.15)

Table 1. Equations of all order with regarding to the parameter ε.

ε order Equations of motion
1 ∂t1u + ∂x1 J0 = 0,
2 ∂t2u = ∂x1

{(
τ − 1

2

)
∂x1 K0

}
− ∂x1 J1.

2.2. The direct Taylor expansion method

We rewrite f neq
j,n−1 in Eq (2.1) into Eq (2.16) [19]:

f neq
j,n−1 =

∞∑
k=1

(
1 −

1
τ

)k {
f eq

j

(
x − (k + 1)c jδt, t − (k + 1)δt

)
− f eq

j

(
x − kc jδt, t − kδt

)}
. (2.16)

Here, we assume f eq
j as follow, and the equilibrium state distribution function f eq

j is an analytic
function.

f eq
j = u[w(0)

j +Kw(2)
j ] + u2Jw(1)

j , (2.17)

the moments of w j are shown in Eq (2.17) as in Table 2. Explicit forms for these weights are presented
in Eqs (2.28) and (2.30).

Table 2. The moments of w j.

Order w(0)
j w(1)

j w(2)
j

0 1 0 0
1 0 1 0
2 0 0 1
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In Eq (2.1), for j sum easy to calculate, on the left of the equation is u (x, t), and the equilibrium
part to the right of Eq (2.1) changes to∑

j

f eq
j,n−1 =

∑
j

∞∑
m=0

(−δt)m

m!

(
∂

∂t
+

(
c j ·

∂

∂x

))m

f eq
j (x, t)

= u − δt
(
∂u
∂t

+ u
∂ [Ju]
∂x

)
+

1
2

(δt)2∂
2 [Ku]
∂x2 + O

(
∂3u
∂x3 ,

∂2u2

∂x∂t
,
∂2u
∂t2

)
.

(2.18)

At the same time, for f neq
j,n−1 in Eq (2.16), one obtain

∑
j

∞∑
k=1

(
1 −

1
τ

)k {
f eq

j

(
x − (k + 1)c jδt, t − (k + 1)δt

)
− f eq

j

(
x − kc jδt, t − kδt

)}
= − δtT1

(
∂u
∂t

+ u
∂ [Ju]
∂x

)
+

1
2

(δt)2∂
2 [Ku]
∂x2 T2 + O

(
∂3u
∂x3 ,

∂2u2

∂x∂t
,
∂2u
∂t2

)
,

(2.19)

where T1 = τ − 1, T2 = 2τ2 − τ − 1, T3 = 6τ3 − 6τ2 + τ − 1 and τ > 1/2 [20].
Putting Eqs (2.18) and (2.19) into Eq (2.1), we can get

∂u
∂t

= − u
∂ [Ju]
∂x

+
δt
2!
∂2 [Ku]
∂x2

T2 + 1
T1 + 1

+ O

(
∂3u
∂x3 ,

∂2u2

∂x∂t
,
∂2u
∂t2

)
. (2.20)

In order to recover the macroscopic Burgers equation, the parameters are defined as

J = a (x, t) /2, K = b (x, t) /(τ − 1/2). (2.21)

Compared with Eqs (2.15) and (2.21), the two analytical equations produce the same results for
non-linear equations. These two methods are very different, but they recover the macroscopic Burgers
equation.

In numerical simulation, we assume the physical space X = δx · x and T = δt · t, and then put the
X, T into Eq (2.20). Therefore, Eq (2.21) is as follows:

J = a (x, t) · δt/(2 · δx), K = b (x, t) · δt/[(δx)2(τ − 1/2)]. (2.22)

At the same time, the leading truncation error term at (δt)0 of Eq (2.20) is the fourth spatial derivative
term whose coefficients involve K . This error term is

(δx)2 (T4 + 1)
2 (T2 + 1)

∂4u
∂X4 . (2.23)

For the D1Q5 lattice, the format of f eq
j is Eq (2.17). In order to remove the truncation error, the

following δ f eq
j is added to f eq

j in the D1Q7 lattice,

δ f eq
j = −

2 (T1 + 1) δt
(T2 + 1) (δx)2 w(4)

j . (2.24)

For the D1Q7 lattice, the following f eq
j is employed:

f eq
j = u[w(0)

j +Kw(2)
j −

2 (T1 + 1) δt
(T2 + 1) (δx)2 w(4)

j ] + u2Jw(1)
j . (2.25)
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We adopt the notation standardized in the LBM literature, where DdQq [6] refers to the d spatial
dimensional model with q kinetic velocity. For the D1Q5 and D1Q7 models, a set of discrete weights
having only the the unit n moment, is provided. These set of weights have the following properties:∑

i

cp
i w(n)

i = δp,n. (2.26)

In the case of D1Q5, when ci = {0,±1,±2}, w(n)
i can be obtained by inverting the matrix:


1 1 1 1 1
0 1 −1 2 −2
0 1 1 4 4
0 1 −1 8 −8
0 1 1 16 16


. (2.27)

The w(n)
i is 

w(0)
i

w(1)
i

w(2)
i

w(3)
i

w(4)
i


=



{1, 0, 0}{
0,±2

3 ,∓
1
12

}{
−5

4 ,
2
3 ,−

1
24

}{
0,∓1

6 ,±
1
12

}{
1
4 ,−

1
6 ,

1
24

}


. (2.28)

In the case of D1Q7, when ci = {0,±1,±2,±3}, w(n)
i can be obtained by inverting the matrix:



1 1 1 1 1 1 1
0 1 −1 2 −2 3 −3
0 1 1 4 4 9 9
0 1 −1 8 −8 27 27
0 1 1 16 16 81 81
0 1 −1 8 −8 243 −243
0 1 1 16 16 729 729


. (2.29)

The w(n)
i is



w(0)
i

w(1)
i

w(2)
i

w(3)
i

w(4)
i

w(5)
i

w(6)
i


=



{1, 0, 0, 0, 0}{
0,±3

4 ,∓
3
20 ,±

1
60

}{
−49

36 ,
3
4 ,−

3
40 ,

1
180

}{
0,∓13

48 ,±
1
6 ,∓

1
48

}{
− 7

18 ,−
13
48 ,

1
12 ,−

1
144

}{
0,± 1

48 ,∓
1
60 ,±

1
240

}{
− 1

36 ,
1
48 ,−

1
120 ,

1
720

}


. (2.30)
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3. Numerical experiment

In this paper, the global relative error (GRE) is used to verify the effectiveness of the lattice
Boltzmann model and the least-squares fitting is used to calculate the accuracy of the model.

GRE =

∑
k=1 |u (xk, t) − u∗ (xk, t)|∑

k=1 |u∗ (xk, t)|
,

among these, u (x, t) and u∗ (x, t) respectively represent the numerical solution and analytical solution.
Example 3.1. For a (x, t) = C1, b (x, t) = C2, Eq (1.5) and the initial boundary conditions are taken
as follows:

∂u
∂t

+ C1u
∂u
∂x

= C2
∂2u
∂x2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ T ;

u(x, 0) =
2C2πsin(πx)
C3 + cos(πx)

, 0 ≤ x ≤ 1;

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

analytical solution [21]

u(x, t) =
2C2πe−π

2C2tsin(πx)
C3 + e−π2C2tcos(πx)

.

We assume C1 = 1, C2 = 0.01, C3 = 2, T = 1. Figures 1–3 depict the images when δx = 0.05,
δx = 0.1, δx = 0.2, and the left-hand plots in each figure show the minimum stability values of τ and δt
about the D1Q5 and D1Q7 lattices. We compare them with the reference [19], and the fitting about the
images is very good. The value of δt is shown in Table 3, δt displays the maximum time increments to
maintain stability with τ = 1.

Table 3. The value of δt corresponding to δx.

δx 0.05 0.10 0.20
δt(D1Q5) 1.26 × 10−6 5.75 × 10−6 1.20 × 10−4

δt(D1Q7) 9.66 × 10−7 4.07 × 10−6 7.24 × 10−5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t 10-3

0.5

1

1.5

2

2.5

3

3.5

4

4.5
D1Q7
reference [19]
D1Q5
reference [19]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t 10-3

1

1.5

2

2.5

3

3.5

4

4.5

D1Q7
D1Q5

(b)

Figure 1. the relaxation time τ (a) and the GRE (b) are presented for δx = 0.05.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t 10-3

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
D1Q7
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D1Q5
reference [19]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t 10-3

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

G
R

E

D1Q7
D1Q5

(b)

Figure 2. the relaxation time τ (a) and the GRE (b) are presented for δx = 0.1.
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Figure 3. the relaxation time τ (a) and the GRE (b) are presented for δx = 0.2.

The plots on the right-hand in Figures 1–3 show the relationship of GRE and δt about D1Q5 and
D1Q7 lattices. The crossed points show corresponding results between the D1Q5 and D1Q7 models.
In Figure 4, the numerical results agree very well with the analytical solution for any t.
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Figure 4. the D1Q5 scheme (a) and the D1Q7 scheme (b) are used to compare with the
analytical solution for δx = 0.2.
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Example 3.2. For a (x, t) = sech2 (t) , b (x, t) = C1sech2 (t), Eq (1.5) becomes

∂u
∂t

+ u
∂

∂x

[
sech2 (t) u

]
+
∂2

∂x2

[
C1sech2 (t) u

]
= 0,

analytical solution [22]

u(x, t) =
C3

C2
±

C1C2

√
r2 − 1

r + cosh(k(x) + c(t) + l)
+

C1C2sinh(k(x) + c(t) + l)
r + cosh(k(x) + c(t) + l)

,

where k(x) = C2x, c(t) = −C3tanh (t), C2 and C3 are any constant, r2 ≥ 1.
Here, macro parameters are assumed to be r = 2, l = 0, C1 = 2, C2 = C3 = 1 and lattice parameters

are assumed δx = 0.2, τ = 1, and the value of δt is shown in Table 3. The calculation area is fixed at
[−10, 10]. Figure 5 shows the comparison plot of numerical results and analytical solution at different
moments. The space-time plots of the numerical result from t = 0 to t = 10 are shown in Figure 6.
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Figure 5. Comparison with the analytical solution for each t using the basic D1Q5 scheme (a)
and the proposed D1Q7 scheme (b) for δx = 0.2.

(a) (b)

Figure 6. The numerical results for D1Q5 (a) and D1Q7 (b) for propagation of the soliton
from t = 0 to t = 10.

Remark 3.1. The colormap default in the MATLAB color box represents the solution of the D1Q5
simulation and the colormap jet stands for the solution of the D1Q7 simulation.
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Then we do some numerical accuracy experiments. Several simulations are performed at different
lattice resolutions δx = {0.05, 0.1, 0.15, 0.2}, and the value of δt is 1.0 × 10−5. Based on the GRE at
t = 1 and t = 2, the slopes of the fitting lines are very close to 2 in Figure 7, which indicates all of
three models have a second-order accuracy in space. When δt =

{
1.0 × 10−5, 5.0 × 10−5, 1.0 × 10−4

}
,

δx = 0.2. Based on the GRE at x = 1 and x = 2, the slopes of the fitting lines are very close to 1 in
Figure 8, which indicates all of three models have a first-order accuracy in time. The results are the
same as Eq (2.20).
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Figure 7. The numerical spatial accuracy diagram of D1Q5 (a) and D1Q7 (b) in Example 3.2.
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Figure 8. The numerical time accuracy chart of D1Q5 (a) and D1Q7 (b) in Example 3.2.

Example 3.3. For a (x, t) = 2sech2 (t) ln(cosh( x
2 )), b (x, t) = C1sech2 (t). Equation (1.5) becomes

∂u
∂t

+ u
∂

∂x

[
2sech2 (t) ln(cosh(

x
2

))u
]

+
∂2

∂x2

[
C1sech2 (t) u

]
= 0,

analytical solution [22]

u(x, t) =
C3

C2
±

C1C2

√
r2 − 1

r + cosh(k(x) + c(t) + l)
+

C1C2sinh(k(x) + c(t) + l)
r + cosh(k(x) + c(t) + l)

,
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where

k(x) =
C1C2

a0

[
ln

(
cosh

(
(C1C4 − a0x)

√
C3

C1
√

a0C2

))
− ln

(
cosh

(
C4
√

C3
√

a0C2

))]
,

c(t) = −C3

∫ t

0
α(τ)dτ, α (t) = sech2 (t) .

When the analytical solution is positive, and the parameters are a0 = 1, r = 2, C1 = 2, C2 = C3 = 1,
C4 = l = 0, lattice parameters are assumed to be δx = 0.2, τ = 1, and the calculation area is fixed at
[−10, 10].

We present the comparison between detailed numerical results and analytical solution. Figure 9
shows the two-dimensional visual comparisons at some different times. The space-time evolution
graph of the numerical results is shown in Figure 10. The numerical results show that the scheme
has good long-time numeric simulation for the Burgers equation with variable coefficient in space and
time. All of them clearly show that the numerical results agree with the analytical solutions well.
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Figure 9. Comparison with analytical solution for each t using the D1Q5 (a) and D1Q7 (b)
when δx = 0.2.

(a) (b)

Figure 10. The numerical results for D1Q5 (a) and D1Q7 (b) for propagation of the soliton
from t = 0 to t = 10.
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The calculation cost is given in Table 4 so as to compare the calculation time of the proposed scheme
on D1Q7 and the basic scheme on D1Q5. We find that D1Q7 costs less than D1Q5. This improvement
is even more significant as spatial step δx is increased.

Table 4. The calculation cost is compared with D1Q5 and D1Q7 in various δx.

δx D1Q5 D1Q7
0.05 4534.35 ± 5.38 675.75 ± 2.15
0.1 180.45 ± 2.43 56.00 ± 1.60
0.2 19.30 ± 1.05 8.00 ± 0.00

4. Conclusions

We derive the nonlinear Burgers equation with variable coefficient from the LB equation by using
the CE analysis and the DTE methods. Based on comparative observations in Section 2, we suggest
that when we derive LB models for macro equation, it is best to start with using the CE analysis of
general equilibrium states. After obtaining some results on the equilibrium distribution function, we
can apply DTE method to conduct error analysis to improve the stability and accuracy of the model.

In this study, we derive the LB model of Burgers by using a SRT-LB model and compare the
LB solutions of the model with the corresponding analysis, which verifies the accuracy of the
model. What’s more, the improvement of accuracy by increasing lattice speeds can be regarded as
a compensation for the deteriorated precision due to increased τ. Increasing the spatial step size δx can
reduce the computational cost. In the future, we prepare to use LB model to simulate more non-linear
PDEs with variable coefficient.
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