Research article Special Issues

Subalgebra analogue of Standard bases for ideals in $ K[[t_{1}, t_{2}, \ldots, t_{m}]][x_{1}, x_{2}, \ldots, x_{n}] $

  • Received: 18 August 2021 Revised: 01 November 2021 Accepted: 23 November 2021 Published: 22 December 2021
  • MSC : 13P10

  • In this paper, we develop a theory for Standard bases of $ K $-subalgebras in $ K[[t_{1}, t_{2}, \ldots, t_{m}]] [x_{1}, x_{2}, ..., x_{n}] $ over a field $ K $ with respect to a monomial ordering which is local on $ t $ variables and we call them Subalgebra Standard bases. We give an algorithm to compute subalgebra homogeneous normal form and an algorithm to compute weak subalgebra normal form which we use to develop an algorithm to construct Subalgebra Standard bases. Throughout this paper, we assume that subalgebras are finitely generated.

    Citation: Nazia Jabeen, Junaid Alam Khan. Subalgebra analogue of Standard bases for ideals in $ K[[t_{1}, t_{2}, \ldots, t_{m}]][x_{1}, x_{2}, \ldots, x_{n}] $[J]. AIMS Mathematics, 2022, 7(3): 4485-4501. doi: 10.3934/math.2022250

    Related Papers:

  • In this paper, we develop a theory for Standard bases of $ K $-subalgebras in $ K[[t_{1}, t_{2}, \ldots, t_{m}]] [x_{1}, x_{2}, ..., x_{n}] $ over a field $ K $ with respect to a monomial ordering which is local on $ t $ variables and we call them Subalgebra Standard bases. We give an algorithm to compute subalgebra homogeneous normal form and an algorithm to compute weak subalgebra normal form which we use to develop an algorithm to construct Subalgebra Standard bases. Throughout this paper, we assume that subalgebras are finitely generated.



    加载中


    [1] G. M Greuel, G. Pfister, A singular introduction to commutative algebra, Springer, 2008. https://doi.org/10.1007/978-3-540-73542-7
    [2] A. Hefez, M. E. Herandes, Computional methods in local theory of curves, ${{23}^{\underline{\text{o}}}}$ Colóquio Brasileiro de Mathemática. IMPA, Rio de Janerio, 2001. Available from: https://impa.br/wp-content/uploads/2017/04/23_CBM_01_03.pdf.
    [3] T. Mora, G. Pfister, C. Traverso, An introduction to the Tangent Cone Algorithm, Publications mathématiques et informatique de Rennes, 4 (1989), 133–171.
    [4] L. Robbiano, M. Sweedler, Subalgebra bases, In: Commutative algebra. Lecture notes in mathematics, Springer, 1430 (1990), 61–87. https://doi.org/10.1007/BFb0085537
    [5] T. Markwig, Standard bases in $K[[t_{1}, t_{2}, \ldots, t_{m}]][x_{1}, x_{2}, \ldots, x_{n}]^{s}$, J. Symb. Comput., 48 (2008), 765–786. https://doi.org/10.1016/j.jsc.2008.03.003 doi: 10.1016/j.jsc.2008.03.003
    [6] J. A. Khan, Subalgebra Analogue to standard bases for ideals, Stud. Sci. Math. Hung., 48 (2011), 458–474. https://doi.org/10.1556/sscmath.2011.1174 doi: 10.1556/sscmath.2011.1174
    [7] L. J. Miller, Analogs of Grobner bases in polynomial rings over a ring, J. Symb. Comput., 21 (1996), 139–153.
    [8] B. Buchberger, An algorithm for finding the bases of the residue class ring modulo a zero dimensional polynomial ideal, Austria: University of Innsbruck, 1965.
    [9] H. S. Li, C. Su, On (De)homogenized Gröbner Bases, 2009, arXiv: 0907.0526.
    [10] W. W. Adams, P. Loustaunau, An introduction to Gröbner Bases, Graduate Studies in Mathematics, 1994.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1666) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog