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Abstract: In this paper, we develop a theory for Standard bases of K-subalgebras in
K[[t1, t2, . . . , tm]][x1, x2, ..., xn] over a field K with respect to a monomial ordering which is local on
t variables and we call them Subalgebra Standard bases. We give an algorithm to compute subalgebra
homogeneous normal form and an algorithm to compute weak subalgebra normal form which we use
to develop an algorithm to construct Subalgebra Standard bases. Throughout this paper, we assume
that subalgebras are finitely generated.
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1. Introduction, notation and definition

For the study of the structure of ideals in a polynomial ring K[x1, x2, ..., xn] over a field K, Bruno
Buchberger presented a concept of Gröbner bases with respect to global monomial orderings
(Indeterminates xi are greater than 1, ∀i) [8]. In [8], Buchberger gave an algorithm called Buchberger
Algorithm For the computation of Gröbner bases, based on the multivariate division algorithm
(Normal form algorithm). The concept of Gröbner bases played an important role in the field of
computational algebraic geometry and computational commutative algebra. Moreover, this concept
was introduced for polynomial ring over a noetherian integral domain [10]. This concept is extended
for the localization of K[x1, x2, ..., xn] in [1], and termed Standard bases. The idea of Standard bases is
tied with local monomial orderings (where indeterminates xi are less than 1, ∀i). They modified the
idea of Normal form algorithm with respect to local monomial ordering to ensure the termination. It
is an ecart based algorithm (for details, see Chapter 1 of [1]) known as Mora’s algorithm (weak
normal form algorithm) [3]. Furthermore, the study was made for Standard bases of ideals in a formal
power series ring K[[t1, t2, ..., tn]] in [2] with respect to local monomial orderings. Later, a theory of
Standard bases for ideals in a more general mixed ordered indeterminates ring
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K[[t1, t2, . . . , tm]][x1, x2, ..., xn] was introduced with respect to a monomial ordering local on t
indeterminates [5]. The concept of Standard bases in K[x1, x2, ..., xn] (K[[t1, t2, . . . , tm]]) is a special
case of Standard bases in K[[t1, t2, . . . , tm]][x1, x2, ..., xn] for m = 0 (n = 0).

Subsequent to the concept of Gröbner bases, a concept of bases for subalgebras in K[x1, x2, ..., xn]
was introduced by Robianno and Sweedler termed as Sagbi bases [4]. Similar to Gröbner bases, this
concept is also tied with global monomial orderings. The algorithm for the construction of Sagbi bases,
is based on Sagbi Normal form algorithm which is the subalgebra analogue of Normal form algorithm
of ideals. The idea of Sagbi bases has been generalized in polynomial ring over a noetherian integral
domain [7]. Later, the concept of Standard bases was introduced for complete subalgebras in the formal
power series ring K[[x1, x2, ..., xn]] with respect to local monomial orderings [2]. The theory of Sagbi
bases is extended to the localization of K[x1, x2, ..., xn], called Sasbi bases 1 in [6]. As with Standard
bases, this idea is also tied with local monomial orderings. They also presented the subalgebra version
of Mora’s algorithm, termed as Sasbi Normal form, which is also an ecart based algorithm.

Similar to the case of Standard bases for ideals [5], it is natural to ask for a theory of Standard bases
for subalgebras in K[[t1, t2, . . . , tm]][x1, x2, ..., xn]. In this paper, we present the subalgebra analogue of
Standard bases for ideals in K[[t1, t2, . . . , tm]]- [x1, x2, ..., xn], termed as “Subalgebra Standard bases”.
Similar to the Standard bases, we develop the idea of these bases with respect to a monomial ordering
local on t indeterminates. As with Sagbi bases, these bases could be infinite for finitely generated
subalgebras (see Example 3.6). The concept of Sagbi bases (assume xi � 1, 1 ≤ i ≤ n) and Sasbi
bases (assume xi ≺ 1, 1 ≤ i ≤ n) for subalgebras in K[x1, x2, ..., xn] is a special case of Subalgebra
Standard bases in K[[t1, t2, . . . , tm]][x1, x2, ..., xn] for m = 0. Moreover, for the case n = 0, a Subalgebra
Standard basis for subalgebra K[G] (G is finite, see Definition 1.3) in K[[t1, t2, . . . , tm]][x1, x2, ..., xn] is
a Standard basis for complete subalgebra K[[G]] (see Theorem 3.2 in [6]). The theory of Subalgebra
Standard bases (tied with mixed orderings), which we have introduced in this paper, unifies the previous
theories (tied with global and local orderings). This theory is more general as previous theories could
be seen as its special cases. It could also be used to solve problems like sublagebra membership
problem in a mixed ring K[[t1, t2, . . . , tm]][x1, x2, ..., xn].

The structure of this paper is as follows. In the start, we give basic notations and terminologies
and introduce the concept of Subalgebra Standard bases (Definition 1.7). The idea of normal form is
very important to characterize subalgebra bases algorithmically. For this purpose, in Section 2, first
we present an algorithm (Algorithm 2.3) to compute subalgebra homogenenous normal form for x-
homogeneous 2 inputs. Due to x-homogeneity, the sequence of terms (obtained after each reduction)
would have same x-degree and it would be convergent with respect to < t >-adic topology. Based on
this algorithm, we give a weak subalgebra normal form algorithm (Algorithm 2.5), which is one of
the key ingredients for the construction of Subalgebra Standard Bases. The weak subalgebra normal
form can be seen as a combination of Sagbi normal form and Sasbi normal form. For the termination
of this algorithm, for input G ⊂ S [x1, x2, . . . , xn] we assume that an x-homogeneous S -subalgebra
S [G∗] admits a finite Sagbi basis, where S = K[[t1, t2, . . . , tm]]. Then, finally in Section 3, we provide
an algorithm to compute Subalgebra Standard bases with the support of algebraic relations between
leading terms of elements of the given input.

For simplicity, let x = (x1, x2, ..., xn) and t = (t1, t2, . . . , tm). Let R := K[[t]][x] denotes the

1Subalgebra Analogue of Standard bases for Ideals.
2We need homogeneity only in terms of indeterminates x′i s.
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polynomial ring in indeterminates x with coefficients in the formal power series ring K[[t]].
Moreover, we use the notation tα for tα1

1 tα2
2 ...t

αm
m and xβ for xβ1

1 xβ2
2 ...x

βn
n with α = (α1, α2, . . . , αm) ∈ Nm

and β = (β1, β2, . . . , βn) ∈ Nn.

Definition 1.1. A monomial ordering on the set of monomials Mon of R is a total ordering � on the
same set such that for all α, α

′

, α” ∈ Nm and β, β
′

, β” ∈ Nn

tαxβ � tα
′

xβ
′

⇒ tα+α”
xβ+β”

� tα
′
+α”

xβ
′
+β”

We say a monomial ordering � t-local if its restriction to the set of monomials of K[[t]] is local.
We call a t-local monomial ordering a t-local weighted degree ordering if there is a weight vector

w = (w1,w2, ...,wm+n) ∈ Rm
≤0 ×R

n such that for all α, α
′

∈ Nm and β, β
′

, ∈ Nn, the scalar product appears
as:

w · (α, β) > w · (α
′

, β
′

)⇒ tαxβ � tα
′

xβ
′

Definition 1.2. Let � be a t-local monomial ordering. A non-zero element f of R can be viewed as:

f =

d∑
|β|=0

∞∑
|α|=0

cα,βtαxβ,

with cα,β ∈ K, |α| = α1 + α2 + ... + αm and |β| = β1 + β2 + ... + βn. We call M f := {tαxβ|cα,β , 0}
the set of monomials of f and T f := {cα,βtαxβ|cα,β , 0} the set of terms of f . Moreover, lm( f ) :=
max{tαxβ|tαxβ ∈ M f }, the coefficient cα,β is then leading coefficient lc( f ), lt( f ) = lc( f )lm( f ) its leading
term and tail( f ) = f − lt( f ) its tail.

Now, we define a K-subalgebra 3 of R and its leading subalgebra.

Definition 1.3. Let � be a t-local monomial ordering on R and a subset G ⊆ R, then A = K[G] is
a subalgebra of R generated by G. Naturally, the elements of A could be viewed as polynomials in
terms of elements of G with coefficients in K. We define the leading subalgebra of G generated by
LM(G) = {lm(g) | g ∈ G} as:

in(G) = K[LM(G)].

Remark 1.4. If G = {g1, g2, ..., gk} ⊂ R, then A = K[G] is called a finitely generated subalgebra.
Throughout this paper, we work with finitely generated subalgebras.

Definition 1.5. Let G = {g1, g2, ..., gk} be a subset of R. For a = (a1, a2, . . . ak) ∈ Nk, we call a power
product of g′i s a G-monomial, i.e., Ga = ga1

1 ga2
1 . . . gak

k

Remark 1.6. Any element f of subalgebra K[G] could be viewed as a finite sum in terms of
G-monomial as f =

∑
i

ciGai with ci ∈ K.

Now, we define a Subalgebra Standard basis for a subalgebra of R as given in Definition 1.7.

Definition 1.7. Let � be a t-local monomial ordering and A be a subalgebra of R. A Standard basis of
A is a subset G ⊆ A such that in(G) = in(A) i.e. for any f ∈ A, lm( f ) ∈ in(G).

3Throughout this paper, we assume subalgebras as K-subalgebras unless mentioned otherwise.
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Note that in(G) need not be equal to in(A), i.e., not every generating set of the subalgebra is a
Subalgebra Standard basis as we can see from the following example.

Example 1.8. Let A = K[G] be a subalgebra of K[[t1, t2]][x1, x2] where G contains three elements g1 =

x2
1+x4

1, g2 = x2
1+x6

1t2 and g3 = x2+t1+t2
1+t3

1 . . .. We have a t-local ordering � on Mon(K[[t1, t2]][x1, x2])
such that x2 � 1 � x1 � t1 � t2.
Choose f = −x6

1t2 − 2x8
1t2 − x12

1 t2
2 (= g1 − g2 − g2

2) ∈ A. We can see that lm( f ) = x6
1t2 < in(G) and hence

G is not a Subalgebra Standard basis of A.

Later, for the weak subalgebra normal form algorithm, we need the concept of multiplicative set
and ecart defined as follows:

Definition 1.9. Let � be a t-local monomial ordering and A be a subalgebra of R, then we define the
multiplicative set for A as:

S �,A = {u ∈ A | lt(u) = 1}.

Definition 1.10. The element f ∈ R is said to be x-homogeneous of x-degree d if every term of f has
the same x-degree d, denoted as degx( f ) = d. The ecart of any element f ∈ R is defined as

ecart( f ) = degx( f ) − degx(lm( f )).

with respect to a t-local monomial ordering.

Now, we present the concept of homogenization and dehomogenization of elements of R in only x
indeterminates with respect to another indeterminate x0.

Definition 1.11. Let f ∈ R, x∗ = (x, x0) and R∗ = R[x0]

a) We define the homogenization f ∗ of f =

d∑
|β|=0

∞∑
|α|=0

cα,βtαxβ as:

f ∗ =
∑

x∗

∞∑
|α|=0

cα,βtαxγ0 xβ ∈ R∗.

with | β | +γ = d for every term of f ∗ and we define dehomogenization of F ∈ R∗ as:

F∗ = F|x0=1.

b) Let � be a t-local monomial ordering. We define its homogenization �∗ which is also a t-local
monomial ordering, as:

tαxβxγ0 �
∗ tα

′

xβ
′

xγ
′

0 iff
|β| + γ > |β

′

| + γ
′

or
|β| + γ = |β

′

| + γ
′

and tαxβ � tα
′

xβ
′

.

Now, we present some results on the relationship between elements and their homogenization and
dehomogenization.
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Lemma 1.12. Let f ∈ R and G ⊂ R and an x-homogeneous element F ∈ R∗

(a) f = ( f ∗)∗.
(b) F = (F∗)∗x

degx∗ (F)−degx∗ ((F∗)∗)
0 .

(c) lm( f ∗) = xecart( f )
0 lm( f ).

(d) lm(F) = x
ecart(F∗)+degx∗ (F)−degx(F∗)
0 lm(F∗).

(e) lm( f ∗) = lm(
∑

i

ci(Gai)∗)xe
0 for some e ≥ 0⇔ lm( f ) = lm(

∑
i

ciGai) ∧ ecart(
∑

i

ciGai) ≤ ecart( f ).

Proof. The proof of Parts (a)–(c) would be similar to the proof holds for polynomials (see [9]). Part (d)
can be obtained by replacing f by F∗ and f ∗ by F in Part(c). For Part(e), first assume

lm( f ∗) = lm(
∑

i

ci(Gai)∗)xe
0. (1.1)

If e = 0, then the result is obvious. For e > 0, from Eq (1.1), we can assume degx∗(lm( f ∗)) =

degx∗(lm(
∑

i

ci(Gai)∗)xe
0) = d. Moreover, by dehomogenizing both sides of Eq (1.1), we get lm( f ) =

lm(
∑

i

ciGai) which implies that the x-degrees of both sides are the same.

Now, consider ecart(
∑

i

ciGai) − ecart( f )

= degx(
∑

i

ciGai) − degx(lm(
∑

i

ciGai)) − degx( f ) + degx(lm( f ))

= degx∗(
∑

i

ci(Gai)∗) − degx∗( f ∗)

= degx∗(lm(
∑

i

ci(Gai)∗)) − degx∗(lm( f ∗))

= degx∗(lm(
∑

i

ci(Gai)∗)) − degx∗(lm(
∑

i

ci(Gai)∗))xe
0

= (d − e) − d = −e < 0.
For the converse, let G be the set such that e = ecart( f )−ecart(

∑
i

ciGai) ≥ 0. From our assumption

lm( f ) = lm(
∑

i

ciGai) and Part (c) above, we get our required result.

To present the theory of Subalgebra Standard bases, we need a subalgebra reduction process
(discussed in section 2). Now, we list the conditions the subalgebra reduction with its normal form
may satisfy.

Definition 1.13. Let � be a t-local monomial ordering. Suppose we have f , r ∈ R and G ⊂ R, such that

f =
∑

i

ciGai + r

AIMS Mathematics Volume 7, Issue 3, 4485–4501.
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The above representation satisfies the following conditions (with respect to �):
Indeterminate conditions:

IC1 lm( f ) ≥ lm(Gai) for all i

IC2 lm(r) < K[LM(G)], unless r = 0

Determinate conditions:

DC1 for all i, lm(Gai) < K[lm(Ga j)| j , i]

DC2 no term of r ∈ K[LM(G)]

Homogeneous eterminate condition:

HDC the above sum of G-monomials and r
are x-homogeneous of x-degree and

equal to degx( f )

With any of the conditions above, we call r a subalgebra normal form of f and if this is zero, we
call such representation a Subalgebra Standard representation.

Definition 1.14. Let � be a t-local monomial ordering and u ∈ S � = { f ∈ R | lm( f ) = 1}. Then under
any of the above conditions, we call a subalgebra normal form r of u · f a weak subalgebra normal
form of f with respect to G ⊂ R.

Note that (DC2)⇒(IC2), (DC1)+(IC2)⇒(IC1) and (DC1)+(DC2)⇒ (IC1). The first implication is
obvious. Let us illustrate some other implications through examples:

Example 1.15. Let g1 = x2 + y − x, g2 = xy + yt − x − xt2 − xt3 − . . . and f = x4 + y2 + 2x2y − xy −
2x3 + x2 − x + y3 + yt + t − xt2 − xt3 − . . . be elements of K[[t]][x, y]. We have t-local lexicographical
ordering �t−lex on K[[t]][x, y] with x � y � 1 � t.
Here f = (g2

1 + g2) + r where r = y3 + t. We can see that this representation satisfies (DC1) (x4 < K[xy]
and xy < K[x4]) and (IC2) (y3 < K[x2, xy]) which implies there is no connection of lm(r)(= y3) with
lm(g2

1)(= x4) and lm(g2)(= xy). Moreover, there is no connection of leading G-power products x4 and
xy with each other and so lm( f ) = x4 satisfies (IC1). Similarly this representation satisfies (DC2) (Any
term of r; y3 and t < K[x2, xy]) which implies (IC1) clearly when we combine (DC2) with (DC1).

AIMS Mathematics Volume 7, Issue 3, 4485–4501.
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2. Subalgebra reduction process

In this section, we discuss the reduction process in subalgebras of R to compute subalgebra normal
form with respect to t-local monomial orderings. For an x-homogeneous element in R, first, we present
a theorem that shows the existence of subalgebra homogeneous normal form with respect to set of
x-homogeneous elements in R along with an algorithm for its computation. Second, we present an
algorithm to compute weak subalgebra normal form of any element in R. This algorithm is a key
ingredient for the computation of Subalgebra Standard bases in R.

Theorem 2.1. Let f ∈ R and G = {g1, g2, . . . , gk} ⊂ R be x-homogeneous, then there exists uniquely
determined r ∈ R such that

f =
∑

i

ciGai + r

satisfying (DC1), (DC2) and (HDC).

Proof. We set f0 = f and for v > 0 we define recursively

fv = fv−1 −
∑

i

ciGai − rv = −
∑

i

citail(Gai), (2.1)

where rv ∈ R is such that
fv−1 =

∑
i

cilt(Gai) + rv (2.2)

satisfies (DC1), (DC2) and (HDC). The above representation of fv−1 used in 2.1 exists since power
products of lt(g′i s) are involved in this representation.

Now, we want to show that the sequences ( fv)∞v=0 and (rv)∞v=1 converge to zero in the < t >-adic
topology. By Lemma(2.3) [5], there exists a t-local weighted degree ordering �w with weight w ∈
Z<0×Z

n for which lm(gi) = lm(gi)�w (leading monomials with respect to �w) for all i, so after replacing
� by �w, we get the same sequences ( fv)∞v=0, (rv)∞v=1 since only power products of lm(g′i s) are involved
in their construction. In particular, (2.2) will satisfy (DC1), (DC2) and (HDC) with respect to �w. Due
to (HDC), fv is again x-homogeneous of x-degree equal to fv−1. Moreover, (DC1)+(DC2)⇒ (IC1), so
for all i

lm( fv−1)�w �w max{lm(Gai)�w} �w max{tail(Gai)�w} �w lm( fv)�w .

From Lemma 2.4 [5], ( fv)∞v=0 converges to zero in the < t >-adic topology and hence by construction

(rv)∞v=1 also converges to zero. But then r :=
∞∑

v=1

rv ∈ R and the sum of G-monomials (unless they are

zero) are x-homogeneous of x-degree equal to degx( f ). Now, we have,

f =
∑

i

ciGai + r

satisfies (DC1), (DC2) and (HDC).
Uniqueness:
Suppose we have two representations of f satisfying (DC1), (DC2) and (HDC), i.e., f =

∑
i

ciGai + r

AIMS Mathematics Volume 7, Issue 3, 4485–4501.
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and f =
∑

j

b jGd j + r
′

. We can see that r
′

− r =
∑

i

ciGai −
∑

j

b jGd j which is a representation in terms

of G monomials. The terms of r
′

− r cannot be further reduced since r
′

and r satisfy (DC2). Therefore,
the representation of r

′

− r is only possible if r
′

− r is zero, i.e, r
′

= r.

Remark 2.2. Let R = K[[t1, t2]][x1, x2] and � be a t-local lexicographical ordering with x1 � x2 � 1 �
t1 � t2. Furthermore, let f = t1, g1 = t1−t2 and g2 = t1−(t1)2 be the elements of R. We can see that every
representation of f in terms of g′i s is not the one we require. For example, f = g2 +g2

1 + (2t1t2− t2
2) does

not satisfy DC1. However, there is a unique representation f = g1 + t2 which satisfies every condition.

On the basis of Theorem 2.1, we now present an algorithm to compute subalgebra homogeneous
normal form.

Algorithm 2.3. (HNF) Let � be any t-local degree ordering in R.
Input: G = {g1, g2, . . . , gk} ⊂ R\{0} and f ∈ R, where f and g′i s are x-homogeneous elements.
Output: r ∈ R such that

f =
∑

i

ciGai + r

satisfies (DC1), (DC2) and (HDC).
Instructions:

• f0 := f ;
• r := 0;
• v := 0;
• while( fv , 0)

Gv =
∑
p∈T fv

p such that p = cplt(Gap) for some ap ∈ Z
k
≥0;

rv := fv −Gv;
r := r + rv;
fv+1 := fv −

∑
p

cpGap − rv ;

v := v + 1;
• return r;

Example 2.4. Let R = K[[t1, t2]][x1, x2] and � be a t-local lexicographical ordering with x1 � x2 �

1 � t1 � t2. Also, let g1 = x1 + x2, g2 = t1 + (t1t2) + (t1t2)2 + (t1t2)3 . . . and f = x2
1x2 + x3

2 + x3
1t1 + x1x2

2t2
2 +

x1x2
2t3

2 + x1x2
2t4

2 . . . be the elements of R. Here f , g1, g2 are x-homogeneous. Note that lt(g1) = x1 and
lt(g2) = t1. Table 1 shows the subalgebra reduction through Algorithm 2.3.

AIMS Mathematics Volume 7, Issue 3, 4485–4501.
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Table 1. For Example 2.4: Subalgebra Homogeneous Reduction of f .

Step fv = fv−1 −
∑

cGa − rv−1 Ga Gv rv = fv −Gv

v=0 x2
1x2 + x3

2 + x3
1t1+ g3

1g2 x3
1t1 x2

1x2 + x3
2 + x1x2

2t2
2+

x1x2
2t2

2 + x1x2
2t3

2 + . . . x1x2
2t3

2 + x1x2
2t4

2 . . .

v=1 −x3
1((t1t2) + (t1t2)2 + . . .) 0 0 −x3

1((t1t2) + (t1t2)2 + . . .)

−3x2
1x2(t1 + (t1t2) + . . .) −3x2

1x2(t1 + (t1t2) + . . .)

−3x1x2
2(t1 + (t1t2)+ −3x1x2

2(t1 + (t1t2)+

(t1t2)2 + . . .) − x3
2(t1 + (t1t2)+ (t1t2)2 + . . .) − x3

2(t1 + (t1t2)

(t1t2)2 + (t1t2)3 . . .) +(t1t2)2 + . . .)

v=2 0 - -

The representation given by the algorithm is:
f = g3

1g2 + r, where r = HNF( f ,G) = (x3
1 + 3x2

1x2 + 3x1x2
2 + x3

2)(t1 + (t1t2) + (t1t2)2 + . . .) + x2
1x2 + x3

2 +

x1x2
2t2

2 + x1x2
2t3

2 + x1x2
2t4

2 . . .− x3
1((t1t2) + (t1t2)2 + . . .)− 3x2

1x2(t1 + (t1t2) + (t1t2)2 + . . .)− 3x1x2
2(t1 + (t1t2) +

(t1t2)2 + . . .) − x3
2(t1 + (t1t2) + (t1t2)2 + . . .).

For f ∈ R and G = {g1, g2, . . . , gk} ⊂ R, we now present an algorithm to compute weak subalgebra
normal form of f with respect to G, which plays an important role for the characterization of
Subalgebra Standard bases. We assume that A = S [G∗] (as an S -subalgebra of S [x∗]) admits a finite
Sagbi basis with respect to �∗, where S = K[[t]] 4.

Algorithm 2.5. (WNF) Let � be any t-local monomial ordering.
Input: f ∈ R and G = {g1, g2, . . . , gk} ⊂ R
Output: r ∈ R, a weak subalgebra normal form of f with respect to G.
Instructions:

• T := G;
• D := {T a | lm( f ) = lm(T a)}, where a ∈ Zk

≥0;
• If ( f , 0 ∧ D , ∅)

If e := (min{ecart(p)|p ∈ D} − ecart( f )) > 0
R
′

:= HNF(xe
0 · f ∗,T ∗);

T := T ∪ { f };
f := (R

′

)∗;
r := WNF( f ,T ) 5;

Else
R
′

:= HNF( f ∗,T ∗);
4Note that S is a noetherian integral domain and �∗ is a global ordering on x∗, we can construct a finite (if exists) Sagbi basis for A

in S [x∗] (for details see [7]).
5Since S [G∗] admits a finite Sagbi basis and lm( f ∗) ∈ S [LM(G∗)], therefore S [G∗ ∪ { f ∗}] would also admits a finite Sagbi basis.

Hence, this procedure will terminate
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f := (R
′

)∗;
r := WNF( f ,T );

• Else
r := f ;

• return r;

Remark 2.6. Algorithm 2.5 works on the assumption that we are able to produce subalgebra
homogeneous normal form as we can see that it relies on HNF algorithm. If G ⊂ R and f ∈ R, then
after applying Algorithm 2.5, we can write as u · f =

∑
i

ciGai + r for some u ∈ S �,A and

G-monomials Gai; where r = WNF( f ,G).

For the termination part of Algorithm 2.5, we first introduce a few notations.

Definition 2.7. For g ∈ T ⊂ S [x], we have g∗ ∈ T ∗ ⊂ S [x∗], for which ltx∗(g∗)is a product of
power series as a coefficient with greatest x∗-power product with respect to �∗ ordering. The leading
subalgebra generated by LTx∗(T ∗) = {ltx∗(g∗) | g ∈ T } is S [LTx∗(T ∗)] denoted by inx∗(T ∗).

Example 2.8. Let g = x2t1 + x1t1 + x2
1t2 ∈ S [x1, x2] with x2 � x1 � 1 � t1 � t2. Then we can write g as

(x2 + x1)t1 + x2
1t2. The homogenization g∗ of g is (x0x2 + x0x1)t1 + x2

1t2 and its x-leading term ltx∗(g∗) is
t1(x0x2).

Remark 2.9. For f ∈ R and G ⊂ R, note that we have a compatibility between lm and ltx∗ in a sense
that ltx∗( f ∗) = ltx∗(Ga)∗ implies lm( f ) = lm(Ga).

Now we prove the termination and correctness of Algorithm 2.5.
Proof. Termination:
In order to see the termination of the algorithm, first, we need to show that

T1 ⊆ T2 ⊆ . . . (2.3)

stops. We use homogenization to prove it. By assumption, a Sagbi basis for A is finite implies that the
ascending chain of initial sublagebras

inx∗(T ∗1) ⊆ inx∗(T ∗2) ⊆ . . .

of the chain

T ∗1 ⊆ T ∗2 ⊆ . . .

must terminate (see [4] for further details). If this chain terminates, then

inx∗(T ∗v ) = inx∗(T ∗N) for all v ≥ N, where N ∈ Z≥0

so that ltx∗( f ∗N+1) ∈ inx∗(T ∗N+1) is also in inx∗(T ∗N), i.e., ltx∗( f ∗N+1) = ltx∗(p∗N) with p∗N ∈ D∗N . It shows
that T ∗v itself becomes stable for v ≥ N and so the algorithm continues to run with the fixed T ∗. Since
p∗N ∈ D∗N , therefore by Remark 2.9, pN ∈ DN , so the Chain(2.3) continues with the fixed T , i.e., Tv = TN

for all v ≥ N, where N ∈ Z≥0. Algorithm 2.3 ensures that lm(RN)∗ < K[TN] which implies that DN+1 is
empty and hence the algorithm terminates.
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Correctness:
By induction, if N = 1, then either f = 0 or D = ∅ ⇒ 1. f = 0 + f is a subalgebra reduction with weak
normal form of f satisfying (IC1) and (IC2).

Assume N > 1 and e = min{ecart(p)|p ∈ D} − ecart( f ).

Case e ≤ 0,
By Theorem 2.1,

f ∗ =
∑

i

ci(T ai)∗ + R
′

satisfies (DC1), (DC2) and (HDC). Since (DC1) and (DC2) implies (IC1), therefore

lm( f ∗) �∗ lm((T ai)∗).

Using Lemma 1.12(c),

xecart( f )
0 lm( f ) �∗ xecart(T ai )

0 lm(T ai)

for some ai ≥ 0, and since f ∗ and (T ai)∗ are x∗-homogeneous of the same x∗-degree by (HDC), therefore
the definition of homogenized ordering (Definition 1.11(b)) implies, for all i,

lm( f ) � lm(T ai). (2.4)

Note that
(R
′

)∗ = ( f ∗ −
∑

i

ci(T ai)∗)∗ = f −
∑

i

ciT ai . (2.5)

Inequality (2.4) and Eq (2.5) imply

lm(R
′

)∗ = lm( f −
∑

i

ciT ai) � lm( f ). (2.6)

Moreover, by induction, we have
u · (R

′

)∗ =
∑

j

c jT a j + r, (2.7)

where u ∈ S �,K[T ] (lm(u) = 1) and r is a weak subalgebra normal form of (R
′

)∗, satisfies (IC1) and
(IC2) which implies for all j

lm((R
′

)∗) = lm(u · (R
′

)∗) � lm(T a j). (2.8)

Combining Eqs (2.5) and (2.7), we get

u · f =
∑

j

c jT a j + u
∑

i

ciT ai + r. (2.9)

Moreover, by using inequalities (2.6) and (2.8) for all j, we have

lm( f ) ≥ lm(T a j).
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The above equation, inequality (2.4) and Eq (2.7) imply that the representation in Eq (2.9) satisfies
(IC1) and (IC2). Therefore, r is the weak subalgebra normal form.

Case e > 0,
By Theorem 2.1,

xe
0 f ∗ =

∑
i

ci(T ai)∗ + R
′

(2.10)

satisfies (DC1), (DC2) and (HDC). Since (DC1) and (DC2) implies (IC1), we have

lm(xe
0 f ∗) �∗ lm((T ai)∗).

Using Lemma 1.12 (c),

xe+ecart( f )
0 lm( f ) �∗ xecart(T ai )

0 lm(T ai)

for some ai ≥ 0. The definition of homogenized ordering (Definition 1.11(b)) implies that for all i, we
have

lm( f ) � lm(T ai). (2.11)

Since both sides of the above representation of xe
0 f ∗ are x∗-homogeneous of the same x∗-degree by

(HDC). Note that
R
′

∗ = f −
∑

i

ciT ai (2.12)

and so we have
lm(R

′

)∗ = lm( f −
∑

i

ciT ai). (2.13)

Since there is some p ∈ D such that lm( f ) = lm(p), so the cancellation of leading terms of xe
0 f ∗ and p∗

in Eq (2.10) implies:
lm(R

′

)∗ ≺ lm( f ). (2.14)

Moreover, by induction

u
′

· (R
′

∗) =
∑

j

c jT a j +
∑

s

csT as + r, (2.15)

where r is a weak subalgebra normal form of R
′

∗ and u
′

∈ S �,K[T ] (lm(u
′

) = 1), satisfies (IC1) and (IC2)
with T a j involves only g′i s and T as involves f as well. It implies for all j and s,

lm(R
′

∗) = lm(u
′

· R
′

∗) � lm(T a j) and lm(R
′

∗) = lm(u
′

· R
′

∗) � lm(T as).

Using inquality (2.14), we have

lm( f ) � lm(T a j) and lm( f ) � lm(T as). (2.16)

Combining Eqs (2.12) and (2.15), we have

u
′

· f = u
′
∑

i

ciT ai +
∑

j

c jT a j +
∑

s

csT as + r. (2.17)

Note that we can write T as = Qs(u′s, g′i s, f ) f and so
∑

s

csT as =
∑

s

csQs f = Q(u′s, g′i s, f ) f , where

Q =
∑

s

csQs. Now Eq (2.17) becomes,
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(u
′

− Q(u′s, g′i s, f )) f = u
′
∑

i

ciT ai +
∑

j

c jT a j + r.

The inequality (2.11), Eq (2.15) and inequality (2.16) imply that the above representation satisfies
(IC1) and (IC2). It remains to show that u = u

′

− Q ∈ S �,K[T ], i.e., lm(u
′

− Q) = 1 which is clear, since
lm( f ) � lm(R

′

∗) � lm(Qs)lm( f ) � lm(Q)lm( f ), i.e., lm(Q) ≺ 1. This implies lm(u
′

−Q) = 1. Therefore,
r is the weak subalgebra normal form of f .

Example 2.10. Let f = x2
1 + x4

1 and G = {g1, g2}, where g1 = x2
1 + x6

1t2, and g2 = x2 + t1 + t2
1 + t3

1 . . .. The
elements f , g1 and g2 ∈ K[[t1, t2]][x1, x2] and we have t-local ordering � on Mon(K[[t1, t2]][x1, x2])
such that x2 � 1 � x1 � t1 � t2. Note that K[[t1, t2]][G∗] = K[[t1, t2]][x4

0x2
1 + x6

1t2, x2 + x0(t1 + t2
1 + t3

1 . . .)]
and LT (G∗) = {x4

0x2
1, x2}. We can see that there are no non-trivial algebraic relations (see [7] for

details). Hence G∗ is a Sagbi basis which certifies the termination of Algorithm WNF. Here ecart( f ) =

2, ecart(g1) = 4 and ecart(g2) = 0. Table 2 shows the subalgebra reduction through Algorithm 2.5.

Table 2. Example 2.10: Subalgebra Weak Reduction of f .

Step fv = (Rv)∗ Tv Dv e = min(ecart(p)) Rv=

v −ecart( fv) HNF(xe
0 fv,T ∗)

(p ∈ Dv)

v=0 x2
1 + x4

1 {g1, g2} {g1} 4-2=2 x2
0x4

1 − x6
1t2

v=1 x4
1 − x6

1t2 {g1, g2, {g2
1, f 2

0 , min(8,6,6) −x4
0x6

1 − x4
0x6

1t2

f0} g1 f0} (=6)-2=4 −x2
0x8

1t2 − x10
1 t2

v=2 −x6
1 − x6

1t2 {g1, g2, {g3
1, f 3

0 , min(12,10,10,8,6,4) −x2
0x8

1 − x4
0x6

1t2−

−x8
1t2 − x10

1 t2 f0, f1} g2
1 f0, g1 f 2

0 , (=4)-4=0 2x2
0x8

1t2 − 2x10
1 t2

g1 f1, f0 f1}

v=3 −x8
1 − x6

1t2− {g1, g2, ∅ - -

2x8
1t2 − 2x10

1 t2 f0, f1}

So we get a weak subalgebra representation of f as:
(1 + f − 2g1) f = g1 + r with (1 + f − 2g1) = 1 + x2

1 + x4
1 − 2x2

1 − 2x6
1t2 ∈ S �,K[T ], where T = G ∪ { f }.

3. Construction of Subalgebra Standard bases

For Subalgebra Standard bases criterion, we define a notion of algebraic relations for G ⊂ R. For
this, we define an evaluation map π: K[Y] → K[LM(G)] via yi 7→ lm(gi); where the cardinality of
Y = {y1, y2, · · · } is same as that of G.

Definition 3.1. Let G = {g1, g2, . . . , gk} ⊂ R. The set of algebraic relations of G denoted by AR(G) is
the kernel of above map π, i.e.,
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AR(G) := {h ∈ K[y1, y2, . . . , yk]|h(lm(g1), lm(g2), . . . , lm(gk)) = 0}

is an ideal in K[Y], where Y = {y1, y2, . . . , yk}.

Definition 3.2. Let G = {g1, g2, . . . , gk} ⊂ R and g =
∑

i

ciGai ∈ K[G]. We define height of g with

respect to given representation as:

ht(g) = maxi{lm(Gai)}.

Theorem 3.3. (Subalgebra Standard Basis Criterion) Let G = {g1, g2, . . . , gk} be a subset of R such
that S [G∗] admits a finite Sagbi basis. Assume that S := {P1, P2, . . . , Pm} is a generating set of AR(G).
Then G is a Subalgebra Standard basis for K[G] iff for each 1 ≤ j ≤ k, WNF(P j(G)) = 0 with respect
to G.

Proof. (⇒) On the contrary, suppose WNF(P j(G)) , 0 for some j. Then by property of weak
subalgebra normal form, lm(WNF(P j(G)) < in(A). Observe that P j(G) ∈ K[G], which implies
WNF(P j(G) ∈ K[G]. By assumption, G is a Subalgebra Standard basis for K[G]. Therefore, by
Definition 1.7 lm(WNF(P j(G)) ∈ in(A) which is a contradiction.

(⇐) To prove that G is a Subalgebra Standard Bases of K[G], we need to show that for any g ∈ K[G],
there exists u ∈ S �,K[G] such that

u · g =

ł∑
i=1

ciGai with lm(g) = ht(
ł∑

i=1

ciGai).

This condition is sufficient since the above representation implies that lm(g) ∈ in(A). On the contrary
suppose that this kind of representation doesn’t hold, i.e., lm(g) ≺ ht(

∑ł
i=1 ciGai). Without loss of

generality, we can assume that this representation has the smallest possible height of all possible
representations of u · g. We denote this height by X := maxl

i=1{lm(Gai)}. Since lm(g) ≺ X, therefore,
we can assume that the first α summands in the above representation be the ones for which
X = lm(Gai). Then cancellation of their leading terms implies

∑α
i=1 cilm(Gai) = 0, i.e., we obtain a

polynomial P(Y) =
∑α

i=1 ciYai ∈ AR(G). Now, S = {P1, ..., Pm} being a generating set of AR(G), we
can write

P(Y) =

m∑
j=1

f j(Y)P j(Y) (3.1)

for suitable f j ∈ K[Y]. Furthermore, note that

ht(P(G)) = maxm
j=1{ht( f j(G))ht(P j(G))}6 = X.

Moreover, by assumption we have for all 1 ≤ j ≤ m, WNF(P j(G) | G) = 0, which means that w jP j(G)
has a representation, w jP j(G) =

∑l j

q=1 cq jG
aq j , for suitable w j ∈ S �,K[G]. Note that

lm(P j(G)) = maxl j

q=1{lm(Gaq j )} ≺ ht(P j(G)). (3.2)

6This equality holds for any represenation of given polynomials
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The strict inequality holds since P j ∈ AR(G). We may assume that w = w j, where 1 ≤ j ≤ m,
therefore for each j, we have

w f j(G)P j(G) =

l j∑
q=1

cq j f j(G)Gaq j . (3.3)

Let X j = maxl j

j=1{lm( f j(G)lm(Gaq j )} be the height of the right hand side in Eq (3.3), then using (3.2) we
have

X j ≺ maxm
j=1{ht( f j(G))ht(P j(G))} = X.

Now, the Eqs (3.1) and (3.3) imply that:

u · g = P(G) +

l∑
i=α+1

ciGai .

=

m∑
j=1

l j∑
q=1

cq j f j(G)Gaq j

︸                   ︷︷                   ︸
sum1

+

l∑
i=α+1

ciGai

︸     ︷︷     ︸
sum2

.

We see that X j ≺ X ; for all 1 ≤ j ≤ m. Therefore, ht(sum1) = maxm
j=1X j ≺ X. By the choice of

α, ht(sum2) ≺ X, which is a contradiction to our assumption of a representation of g with smallest
possible height. Thus, G is a Subalgebra Standard basis of K[G].

We now present an algorithm to compute Subalgebra Standard basis on the basis of Theorem 3.3.

Algorithm 3.4. Let � be a t-local monomial ordering on R.
Input: A finite subset G ⊂ R.
Output: A Subalgebra Standard basis F for K[G].
Instructions:

• F = G;
• oldF = ∅;
• while (F , oldF)

Compute a generating set S for AR(F);
P = S(F);
Red = {WNF(p | F) | p ∈ P \ {0}} \ {0};
oldF = F;
F = F ∪ Red;
• return F;

Example 3.5. Let G = {g1, g2, g3}, where g1 = x2
1 + x4

1, g2 = x2
1 + x6

1t2 and g3 = x2 + t1 + t2
1 + t3

1 . . .

be elements of K[[t1, t2]][x1, x2]. We have t-local ordering � on Mon(K[[t1, t2]][x1, x2]) with x2 � 1 �
x1 � t1 � t2. Note that K[[t1, t2]][G∗] = K[[t1, t2]][x2

0x2
1 + x4

1, x
4
0x2

1 + x6
1t2, x2 + x0(t1 + t2

1 + t3
1 . . .)]

and LT (G∗) = {x2
0x2

1, x
4
0x2

1, x2}. Since there are no non-trivial algebraic relations (see [7] for details).
Hence G∗ is a Sagbi basis. This ensures the termination of Algorithm WNF. The construction of
Subalgebra Standard basis for K[G] is shown in Table 3. This table shows that {x2

1 + x4
1, x

2
1 + x6

1t2, x2 +

t1 + t2
1 + t3

1 . . . ,−x8
1 − x6

1t2 − 2x8
1t2 − 2x10

1 t2} is a Subalgebra Standard basis for K[G].
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Table 3. Example 3.5: Subalgebra Standard basis for K[G].

Step OldFv Fv = Sv = Pv = Sv(Fv) Redv = {WNF(p, Fv) |

v Fv−1 ∪ Redv−1 AR(Fv) p ∈ Pv} \ {0}

v=0 ∅ {g1, g2, g3} y1 − y2 x4
1 − x6

1t2 −x8
1 − x6

1t2−

2x8
1t2 − 2x10

1 t2 = g4

v=1 {g1, g2, g3} {g1, g2, g3, g4} y1 − y2 x4
1 − x6

1t2 ∅

v=2 {g1, g2, g3, g4} {g1, g2, g3, g4} - - -

Now, we present an example which shows that Subalgebra Standard bases could be infinite for even
finitely generated subalgebras.

Example 3.6. Let � be a t-local ordering on Mon(K[[t]][x1, x2]) with x2 � 1 � x1 � t and G =

{g1, g2, g3} ⊂ K[[t]][x1, x2], where g1 = x1t + x2, g2 = x1x2t and g3 = x1x2
2t. Table 4 shows the first

three steps of the Standard basis Algorithm. At each nth step there is addition of an element xn+1
1 x2tn+1

in Fn (n ≥ 1) 7. This implies that the set {x1t + x2, x1x2t, x1x2
2t, x2

1x2t2, x3
1x2t3, x4

1x2t4, . . .} is a Subalgebra
Standard basis for K[G].

Table 4. Example 3.6: Subalgebra Standard basis for K[G].

Step OldFv Fv = Sv = Pv = Sv(Fv) Redv

v Fv−1 ∪ Redv−1 AR(Fv)

v=0 ∅ {g1, g2, g3} y1y2 − y3 x2
1x2t2 x2

1x2t2 = g4

v=1 {g1, g2, g3} {g1, g2, g3, {y1y2 − y3, y1y4 − y2
2} x3

1x2t3 x3
1x2t3 = g5

g4}

v=2 {g1, g2, g3, {g1, g2, g3, {y1y2 − y3, x4
1x2t4 x4

1x2t4 = g6

g4} g4, g5} y1y4 − y2
2, y1y5 − y2y4}
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