Research article

Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function

  • Received: 13 October 2021 Revised: 21 November 2021 Accepted: 24 November 2021 Published: 17 December 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • The purpose of this article is to discuss some midpoint type HHF fractional integral inequalities and related results for a class of fractional operators (weighted fractional operators) that refer to harmonic convex functions with respect to an increasing function that contains a positive weighted symmetric function with respect to the harmonic mean of the endpoints of the interval. It can be concluded from all derived inequalities that our study generalizes a large number of well-known inequalities involving both classical and Riemann-Liouville fractional integral inequalities.

    Citation: Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan. Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function[J]. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232

    Related Papers:

  • The purpose of this article is to discuss some midpoint type HHF fractional integral inequalities and related results for a class of fractional operators (weighted fractional operators) that refer to harmonic convex functions with respect to an increasing function that contains a positive weighted symmetric function with respect to the harmonic mean of the endpoints of the interval. It can be concluded from all derived inequalities that our study generalizes a large number of well-known inequalities involving both classical and Riemann-Liouville fractional integral inequalities.



    加载中


    [1] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [2] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 4352357. https://doi.org/10.1155/2020/4352357 doi: 10.1155/2020/4352357
    [3] A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. https://doi.org/10.3390/math9020122 doi: 10.3390/math9020122
    [4] D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, Y. Rangel-Oliveros, Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 374. https://doi.org/10.1186/s13662-020-02837-0 doi: 10.1186/s13662-020-02837-0
    [5] C. Bardaro, P. L. Butzer, I. Mantellini, The foundations of fractional calculus in the Mellin transform setting with applications, J. Fourier Anal. Appl., 21 (2015), 961–1017. https://doi.org/10.1007/s00041-015-9392-3 doi: 10.1007/s00041-015-9392-3
    [6] D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 59 (2020), 2975–2984. https://doi.org/10.1016/j.aej.2020.03.039 doi: 10.1016/j.aej.2020.03.039
    [7] F. Chen, S. Wu, Fejér and Hermite-Hadamard type inqequalities for harmonically convex functions, J. Appl. Math., 2014 (2014). https://doi.org/10.1155/2014/386806 doi: 10.1155/2014/386806
    [8] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University: Footscray, Australia, 2000.
    [9] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998) 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [10] M. R. Delavar, M. Aslani, M. De La Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018), 5864091. https://doi.org/10.1155/2018/5864091 doi: 10.1155/2018/5864091
    [11] L. Fejér, Über die fourierreihen, Ⅱ, Math. Naturwiss. Anz Ungar. Akad. Wiss, 24 (1906), 369–390. https://doi.org/10.1086/141409 doi: 10.1086/141409
    [12] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Method. Appl. Sci., 44 (2020), 1–18. https://doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188
    [13] B. Gavrea, I. Gavrea, On some Ostrowski type inequalities, Gen. Math., 18 (2010), 33–44. https://doi.org/10.1016/j.mcm.2007.12.004 doi: 10.1016/j.mcm.2007.12.004
    [14] H. Gunawan, Eridani, Fractional integrals and generalized Olsen inequalities, Kyungpook Math. J., 49 (2009), 31–39. https://doi.org/10.5666/KMJ.2009.49.1.031 doi: 10.5666/KMJ.2009.49.1.031
    [15] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215.
    [16] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. https://doi.org/10.1515/math-2020-0038 doi: 10.1515/math-2020-0038
    [17] İ. İşcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. U. Babes-Bol. Mat., 60 (2015), 355–366.
    [18] İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
    [19] İ. İşcan, M. Kunt, N. Yazici, Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals, New Tre. Math. Sci., 4 (2016), 239–253. http://dx.doi.org/10.20852/ntmsci.2016320378 doi: 10.20852/ntmsci.2016320378
    [20] F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020). https://doi.org/10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113
    [21] S. Kaijser, L. Nikolova, L. E. Persson, A. Wedestig, A Hardy type inequalities via convexity, Math. Inequal. Appl., 8 (2005), 403–417.
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B. V., 204 (2006).
    [23] M. Kunt, İ. İşcan, On new Hermite-Hadamard-Fejér type inequalities for $p$-convex functions via fractional integrals, CMMA, 2 (2017), 1–15.
    [24] A. Kashuri, T. M. Rassias, New Hermite-Hadamard-Fejer inequalities via k-fractional integrals for di erentiable generalized nonconvex functions, Filomat, 34 (2020), 2549–2558. https://doi.org/10.2298/FIL2008549K doi: 10.2298/FIL2008549K
    [25] P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610
    [26] P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 148. https://doi.org/10.1186/s13660-020-02419-4 doi: 10.1186/s13660-020-02419-4
    [27] H. Kalsoom, M. Vivas-Cortez, M. Amer Latif, H. Ahmad, Weighted midpoint Hermite-Hadamard-Fejér type inequalities in fractional calculus for harmonically convex functions, Fractal Fract., 5 (2021), 252. https://doi.org/10.3390/fractalfract5040252 doi: 10.3390/fractalfract5040252
    [28] H. Kalsoom, H. Budak, H. Kara, M. A. Ali, Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals, Open Math., 19 (2021), 1153–1186. https://doi.org/10.1515/math-2021-0072 doi: 10.1515/math-2021-0072
    [29] P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. https://doi.org/10.3390/sym12091485 doi: 10.3390/sym12091485
    [30] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69. https://doi.org/10.1186/s13662-020-2541-2 doi: 10.1186/s13662-020-2541-2
    [31] S. Z. Ullah, M. A. Khan, Z. A. Khan, Y. M. Chu, Coordinate strongly s-convex functions and related results, J. Math. Inequal., 14 (2020), 829–843. https://doi.org/10.17719/jisr.11662 doi: 10.17719/jisr.11662
    [32] Y. Khurshid, M. A. Khan, Y. M. Chu, Z. A. Khan, Hermite-Hadamard Fejér inequalities for conformal fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1–10. https://doi.org/10.1155/2019/4976351 doi: 10.1155/2019/4976351
    [33] Z. A. Khan, R. Gul, K. Shah, On impulsive boundary value problem with Riemann-Liouville fractional order derivative, J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/8331731 doi: 10.1155/2021/8331731
    [34] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Method. Appl. Sci., 44 (2019), 2314–2324. https://doi.org/10.1002/mma.5784 doi: 10.1002/mma.5784
    [35] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. https://doi.org/10.1039/D0AY90014A doi: 10.1039/D0AY90014A
    [36] I. G. Macdonald, Symmetric functions and orthogonal polynomials, American Mathematical Society, New York, 1997.
    [37] S. Mehmood, F. Zafar, N. Asmin, New Hermite-Hadamard-Fejér type inequalities for ($h_{1}$, $h_{2}$)-convex functions via fractional calculus, ScienceAsia, 46 (2020), 102–108. https://doi.org/10.2306/scienceasia1513-1874.2020.S015 doi: 10.2306/scienceasia1513-1874.2020.S015
    [38] T. J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026
    [39] F. Qi, O. P. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite-Hadamard type for ($\nu$, $m$)-convex functions, J. Inequal. Appl., 2019 (2019), 135. https://doi.org/10.1186/s13660-019-2079-6 doi: 10.1186/s13660-019-2079-6
    [40] M. Z. Sarikaya, H. Yaldiz, On generalization integral inequalities for fractional integrals, Nihonkai Math. J., 25 (2014), 93–104.
    [41] M. Z. Sarikaya, C. C. Bilisik, P. O. Mohammed, Some generalizations of Opial type inequalities, Appl. Math. Inf. Sci., 14 (2020), 809–816. https://doi.org/10.18576/amis/140508 doi: 10.18576/amis/140508
    [42] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [43] Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. https://doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8
    [44] D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of ($\nu$, $m$)-convex functions, Fract. Differ. Calc., 4 (2014), 31–43.
    [45] M. Vivas-Cortez, T. Abdeljawad, P. O. Mohammed, Y. Rangel-Oliveros, Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 2020 (2020), 1936461. https://doi.org/10.1155/2020/1936461 doi: 10.1155/2020/1936461
    [46] C. J. Zhao, W. S. Cheung, On improvements of the Rozanova's inequality, J. Inequal. Appl., 2011 (2011), 33. https://doi.org/10.1186/1029-242X-2011-33 doi: 10.1186/1029-242X-2011-33
    [47] A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat, 34 (2020), 931–944. https://doi.org/10.2298/FIL2003931S doi: 10.2298/FIL2003931S
    [48] A. Abdalmonem, A. Scapellato, Fractional operators with homogeneous kernels in weighted Herz spaces with variable exponent, Appl. Anal., 2020. https://doi.org/10.1080/00036811.2020.1789602 doi: 10.1080/00036811.2020.1789602
    [49] T. Y. Zhang, A. P. Ji, F. Qi, On integral inequalities of Hermite-Hadamard type for $s$-geometrically convex functions, Abstr. Appl. Anal., 2012 (2012), 560586. https://doi.org/10.1155/2012/560586 doi: 10.1155/2012/560586
    [50] T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Mat., 68 (2013), 229–239. https://doi.org/10.4418/2013.68.1.17 doi: 10.4418/2013.68.1.17
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1616) PDF downloads(94) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog