Research article Special Issues

Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative

  • Received: 25 October 2021 Accepted: 02 December 2021 Published: 13 December 2021
  • MSC : 26A33, 34A08

  • This article is devoted to investigate a class of non-local initial value problem of implicit-impulsive fractional differential equations (IFDEs) with the participation of the Caputo-Fabrizio fractional derivative (CFFD). By means of Krasnoselskii's fixed-point theorem and Banach's contraction principle, the results of existence and uniqueness are obtained. Furthermore, we establish some results of Hyers-Ulam (H-U) and generalized Hyers-Ulam (g-H-U) stability. Finally, an example is provided to demonstrate our results.

    Citation: Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari. Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative[J]. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222

    Related Papers:

  • This article is devoted to investigate a class of non-local initial value problem of implicit-impulsive fractional differential equations (IFDEs) with the participation of the Caputo-Fabrizio fractional derivative (CFFD). By means of Krasnoselskii's fixed-point theorem and Banach's contraction principle, the results of existence and uniqueness are obtained. Furthermore, we establish some results of Hyers-Ulam (H-U) and generalized Hyers-Ulam (g-H-U) stability. Finally, an example is provided to demonstrate our results.



    加载中


    [1] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153.
    [2] R. Metzler, K. Joseph, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107–125.
    [3] K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
    [4] F. A. Rihan, Numerical modeling of fractional-order biological systems, Abstr. Appl. Anal., 2013 (2013), 1–11. https://doi.org/10.1155/2013/816803 doi: 10.1155/2013/816803
    [5] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional Calculus, Dordrecht, Springer, 2007.
    [6] V. E. Tarasov, Fractional dynamics: Application of fractional Calculus to dynamics of particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
    [7] M. D. Ortigueira, Fractional Calculus for scientists and engineers: Lecture notes in electrical engineering, 84, Springer, Dordrecht, 2011.
    [8] J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Front. Fract. Calc., 1 (2017), 270–342.
    [9] M. I. Abbas, On the Hamdard and Riemann-Liouville fractional neutral functional integro-differential equations with finite delay, J. Pseudo-Differ. Oper., 10 (2019), 1–10.
    [10] M. I. Abbas, Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions, J. Contemp. Math. Anal., 50 (2015), 209–219. https://doi.org/10.3103/S1068362315050015 doi: 10.3103/S1068362315050015
    [11] A. Atangana, B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arabian J. Geo., 9 (2016), 1–6. https://doi.org/10.1007/s12517-015-2060-8 doi: 10.1007/s12517-015-2060-8
    [12] A. A. Kilbas, M. Saigo, RK. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transf. Spec. F., (2004), 31–49. https://doi.org/10.1080/10652460310001600717
    [13] M. Caputo, M. Fabrizio, A new definition of fractional derivative of without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [14] T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017), 1–9. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
    [15] R. A. Khan, K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19 (2015), 515–526.
    [16] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [17] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126–137. https://doi.org/10.1006/jmaa.1998.5916 doi: 10.1006/jmaa.1998.5916
    [18] S. M. Jung, Hyers-Ulam stability of linear differential equations of first order Ⅱ, Appl. Math. Lett., 19 (2006), 854–858. https://doi.org/10.1016/j.aml.2005.11.004 doi: 10.1016/j.aml.2005.11.004
    [19] D. D. Bajnov, P. S. Simeonov, Systems with impulse effect stability, theory and applications. Ellis Horwood Series in mathematics and its applications, Halsted Press, New York, 1989.
    [20] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive diferential equations and inclusions: Contemporary mathematics and its applications, Hindawi Publishing Corporation, New York, 2006. https://doi.org/10.1155/9789775945501
    [21] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989. https://doi.org/10.1142/0906
    [22] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [23] T. A. Burton, T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal.-Theor., 49 (2002), 445–54. https://doi.org/10.1016/S0362-546X(01)00111-0 doi: 10.1016/S0362-546X(01)00111-0
    [24] J. E. Prussing, L. J. Wellnitz, W. G. Heckathorn, Optimal impulsive time-fixed direct-ascent interception, J. Guid. Control Dynam., 12 (1989), 487–494. https://doi.org/10.2514/3.20436 doi: 10.2514/3.20436
    [25] X. Liu, K. Rohlf, Impulsive control of a Lotka-Volterra system, J. Math. Cont. Inf., 15 (1998), 269–284. https://doi.org/10.1093/imamci/15.3.269 doi: 10.1093/imamci/15.3.269
    [26] T. Yang, L. Chua, Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication, IEEE T. Circuits-I, 44 (1997), 976–988. https://doi.org/10.1109/81.633887 doi: 10.1109/81.633887
    [27] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92.
    [28] K. Liu, J. Wang, Y. Zhou, D. O'Regan, Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos, Soliton. Fract., 132 (2020), 109534. https://doi.org/10.1016/j.chaos.2019.109534 doi: 10.1016/j.chaos.2019.109534
    [29] J. Sheng, W. Jiang, D. Pang, S. Wang, Controllability of nonlinear fractional dynamical systems with a Mittag-Leffler kernel, Mathematics, 8 (2020), 2139. https://doi.org/10.3390/math8122139 doi: 10.3390/math8122139
    [30] D. Aimene, D. Baleanu, D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos, Soliton. Fract., 128 (2019), 51–57. https://doi.org/10.1016/j.chaos.2019.07.027 doi: 10.1016/j.chaos.2019.07.027
    [31] D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Method. Appl. Sci., 43 (2020), 443–457. https://doi.org/10.1002/mma.5903 doi: 10.1002/mma.5903
    [32] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Stat. Mech. Appl., 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
    [33] A. Atangana, J. F. Gomez-Aguilar, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. https://doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477
    [34] Eiman, K. Shah, M. Sarwar, D. Baleanu, Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations, Adv. Differ. Equ., 2020 (2020), 1–9. https://doi.org/10.1186/s13662-020-02624-x doi: 10.1186/s13662-020-02624-x
    [35] K. M. Owolabi, A. Shikonogo, Fractal fractional operator method on HER2+ and breast cancer dynamics, Appl. Comput. Math., 7 (2021), 1–19. https://doi.org/10.1007/s40819-021-01030-5 doi: 10.1007/s40819-021-01030-5
    [36] K. M. Owolabi, Analysis and numerical simulation of cross-reaction systems with the Caputo-Fabrizio and Riezs operators, Numer. Meth. Part. D. E., 2021 (2021), 1–23.
    [37] E. J. Moore, S. Sirisubtawee, S. Koonprasert, A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment, Adv. Differ. Equ., 2019 (2019), 200. https://doi.org/10.1186/s13662-019-2138-9 doi: 10.1186/s13662-019-2138-9
    [38] D. Baleanu, S. S. Sajjadi, A. Jajarmi, Z. Defterli, On a nonlinear dynomical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control, Adv. Differ. Equ., 2021 (2021), 234. https://doi.org/10.1186/s13662-021-03393-x doi: 10.1186/s13662-021-03393-x
    [39] D. Baleanu, S. S. Sajjadi, J. H. Asad, A. Jajarmi, E. Estiri, Hyperchaotic behaviors, optimal control and synchronization of a nonautonomous cardiac conduction System, Adv. Differ. Equ., 2021 (2021), 175. https://doi.org/10.1186/s13662-021-03320-0 doi: 10.1186/s13662-021-03320-0
    [40] D. Baleanu, S. Zibaei, M. Namjoo, A. Jajarmi, A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a noval fractional chaotic system, Adv. Differ. Equ., 2021 (2021), 308. https://doi.org/10.1186/s13662-021-03454-1 doi: 10.1186/s13662-021-03454-1
    [41] M. M. Meerschaert, A. B. David, H. P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 65 (2002), 041103. https://doi.org/10.1103/PhysRevE.65.041103 doi: 10.1103/PhysRevE.65.041103
    [42] R. Schumer, A. B. David, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res., 39 (2003), 1296.
    [43] X. Zheng, H. Wang, H. Fu, Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative, Chaos Soliton. Fract., 138 (2020), 109966. https://doi.org/10.1016/j.chaos.2020.109966 doi: 10.1016/j.chaos.2020.109966
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2102) PDF downloads(122) Cited by(18)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog