Research article

Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive

  • Received: 27 March 2022 Revised: 28 May 2022 Accepted: 18 July 2022 Published: 13 September 2022
  • MSC : 26A33, 34A37, 34K37, 93B05

  • The existence of a mild solution for nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneous impulse in Hilbert space is investigated in this study. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive conditions, sufficient criteria for controllability are established. Finally, an illustration of the acquired results is shown.

    Citation: Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart. Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive[J]. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100

    Related Papers:

  • The existence of a mild solution for nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneous impulse in Hilbert space is investigated in this study. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive conditions, sufficient criteria for controllability are established. Finally, an illustration of the acquired results is shown.



    加载中


    [1] X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997.
    [2] A. Atangana, S. I. Araz, Fractional stochastic differential equations: Applications to Covid-19 modeling, Springer Singapore, 2022. https://doi.org/10.1007/978-981-19-0729-6
    [3] F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson iumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017), 5394528. https://doi.org/10.1155/2017/5394528 doi: 10.1155/2017/5394528
    [4] H. Ahmad, N. Alam, M. Omri, New computational results for a prototype of an excitable system, Results Phys., 28 (2021), 104666. https://doi.org/10.1016/j.rinp.2021.104666 doi: 10.1016/j.rinp.2021.104666
    [5] M. Adel, Numerical simulations for the variable order two-dimensional reaction sub diffusion equation: Linear and nonlinear, Fractals, 30 (2022), 2240019. https://doi.org/10.1142/S0218348X22400199 doi: 10.1142/S0218348X22400199
    [6] M. Adel, M. Elsaid, An efficient approach for solving fractional variable order reaction sub-diffusion equation base on Hermite formula, Fractals, 30 (2022), 2240020. https://doi.org/10.1142/S0218348X22400205 doi: 10.1142/S0218348X22400205
    [7] M. M. Khader, J. F. Gómez-Aguilar, M. Adel, Numerical study for the fractional RL, RC, and RLC electrical circuits using Legendre pseudo-spectral method, Int. J. Circ. Theor. App., 49 (2021), 3266–3285. https://doi.org/10.1002/cta.3103 doi: 10.1002/cta.3103
    [8] M. Adel, H. M. Srivastava, M. M. Khader, Implementation of an accurate method for the analysis and simulation of electrical R-L circuits, Math. Method. Appl. Sci., 2022. https://doi.org/10.1002/mma.8062
    [9] H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Bound Value Probl., 2020 (2020), 1–25. https://doi.org/10.1186/s13661-020-01418-0 doi: 10.1186/s13661-020-01418-0
    [10] J. P. Dauer, N. I. Mahmudov, Exact null controllability of semilinear integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl., 299 (2004), 322–332. https://doi.org/10.1016/j.jmaa.2004.01.050 doi: 10.1016/j.jmaa.2004.01.050
    [11] H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 2019 (2019), 82. https://doi.org/10.1186/s13662-019-2028-1 doi: 10.1186/s13662-019-2028-1
    [12] P. Muthukumar, K. Thiagu, Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order $1 < q < 2$ with infinite delay and Poisson jumps, J. Dyn. Control Syst., 23 (2017), 213–235. https://doi.org/10.1007/s10883-015-9309-0 doi: 10.1007/s10883-015-9309-0
    [13] A. Chadha, S. N. Bora, Approximate controllability of impulsive neutral stochastic differential equations driven by Poisson jumps, J. Dyn. Control Syst., 24 (2018), 101–128. https://doi.org/10.1007/s10883-016-9348-1 doi: 10.1007/s10883-016-9348-1
    [14] H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Controllability and constrained controllability for nonlocal Hilfer fractional differential systems with Clarke's subdifferential, J. Inequal. Appl., 2019 (2019), 233. https://doi.org/10.1186/s13660-019-2184-6 doi: 10.1186/s13660-019-2184-6
    [15] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley, 1993.
    [16] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [17] R. F. Curtain, H. Zwart, An introduction to infinite dimensional linear systems theory, New York: Springer, 1995. https://doi.org/10.1007/978-1-4612-4224-6
    [18] A. Pazy, Semigroups of linear operators and applications to partial differential equations, In: Applied mathematical sciences, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [19] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
    [20] I. Yaroslavtsev, Burkholder-Davis-Gundy inequalities in UMD banach spaces, Commun. Math. Phys., 379 (2020), 417–459. https://doi.org/10.1007/s00220-020-03845-7 doi: 10.1007/s00220-020-03845-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1394) PDF downloads(97) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog