Research article Special Issues

New results on a coupled system for second-order pantograph equations with $ \mathcal{ABC} $ fractional derivatives

  • Received: 21 July 2022 Revised: 19 August 2022 Accepted: 19 August 2022 Published: 05 September 2022
  • MSC : 34A08, 34A12, 47H10

  • The aim of this paper is to demonstrate a coupled system of second-order fractional pantograph differential equations with coupled four-point boundary conditions. The proposed system involves Atangana-Baleanu-Caputo ($ \mathcal{ABC} $) fractional order derivatives. We prove the solution formula for the corresponding linear version of the given system and then convert the system to a fixed point system. The existence and uniqueness results are obtained by making use of nonlinear alternatives of Leray-Schauder fixed point theorem, and Banach's contraction mapping. In addition, the guarantee of solutions for the system at hand is shown by the stability of Ulam-Hyers. Pertinent examples are provided to illustrate the theoretical results.

    Citation: Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad. New results on a coupled system for second-order pantograph equations with $ \mathcal{ABC} $ fractional derivatives[J]. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071

    Related Papers:

  • The aim of this paper is to demonstrate a coupled system of second-order fractional pantograph differential equations with coupled four-point boundary conditions. The proposed system involves Atangana-Baleanu-Caputo ($ \mathcal{ABC} $) fractional order derivatives. We prove the solution formula for the corresponding linear version of the given system and then convert the system to a fixed point system. The existence and uniqueness results are obtained by making use of nonlinear alternatives of Leray-Schauder fixed point theorem, and Banach's contraction mapping. In addition, the guarantee of solutions for the system at hand is shown by the stability of Ulam-Hyers. Pertinent examples are provided to illustrate the theoretical results.



    加载中


    [1] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer: New York, 2010.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of the fractional differential equations, Vol. 204, Elsevier: Amsterdam, The Netherlands, 2006.
    [3] K. Deimling, Nonlinear functional analysis, Springer, New York, 1985.
    [4] A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods and applications, Adv. Differ. Equ., 659 (2020), 1–89.
    [5] A. Atangana, S. I. Araz, Nonlinear equations with global differential and integral operators: Existence, uniqueness with application to epidemiology, Results Phys., 20 (2021), 103593.
    [6] M. S. Abdo, S. K. Panchal, K. Shah, T. Abdeljawad, Existence theory and numerical analysis of three species prey-predator model under Mittag-Leffler power law, Adv. Differ. Equ., 249 (2020), 1–16.
    [7] M. A. Dokuyucu, Caputo and Atangana-Baleanu-Caputo fractional derivative applied to garden equation, Turk. J. Sci., 5 (2020), 1–7.
    [8] M. A. Dokuyucu, E. Celik, Analyzing a novel coronavirus model (COVID-19) in the sense of Caputo-Fabrizio fractional operator, Appl. Comput. Math., 2021 (2021), 49–69.
    [9] M. A. Dokuyucu, Analysis of a fractional plant-nectar-pollinator model with the exponential kernel, East. Anatolian J. Sci., 6 (20201), 11–20.
    [10] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 2 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [11] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2 (2015), 87–92.
    [12] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [13] B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091
    [14] B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Solitons Fract., 83 (2016), 234–241. https://doi.org/10.1016/j.chaos.2015.12.014 doi: 10.1016/j.chaos.2015.12.014
    [15] N. I. Mahmudov, S. Bawaneh, A. Al-Khateeb, On a coupled system of fractional differential equations with four point integral boundary conditions, Mathematics, 7 (2019), 279. https://doi.org/10.3390/math7030279 doi: 10.3390/math7030279
    [16] M. S. Abdo, K. Shah, S. k. Panchal, H. A. Wahash, Existence and Ulam stability results of a coupled system for terminal value problems involving $\psi $-Hilfer fractional operator, Adv. Differ. Equ., 2020 (2020), 1–21.
    [17] M. I. Abbas, Four-point boundary value problems for a coupled system of fractional differential equations with $\psi $-Caputo fractional derivatives, arXiv, 2020.
    [18] J. Zhou, S. Zhang, Y. He, Existence and stability of solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 498 (2021), 124921. https://doi.org/10.1016/j.jmaa.2020.124921 doi: 10.1016/j.jmaa.2020.124921
    [19] J. Zhou, S. Zhang, Y. He, Existence and stability of solution for nonlinear differential equations with $\psi $-Hilfer fractional derivative, Appl. Math. Lett., 121 (2021), 107457.
    [20] R. Gu, K. Shah, Z. A. Khan, F. Jarad, On a class of boundary value problems under $\mathcal {ABC}$ fractional derivative, Adv. Differ. Equ., 2021 (2021), 1–12.
    [21] T. Abdeljawad, M. A. Hajji, Q. M. Al-Mdallal, F. Jarad, Analysis of some generalized $\mathcal {ABC}$ fractional logistic models, Alex. Eng. J., 59 (2020), 2141–2148.
    [22] M. Al-Smadi, H. Dutta, S. Hasan, S. Momani, On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert space, Math. Model. Nat. Phenom., 16 (2021), 41. https://doi.org/10.1051/mmnp/2021030 doi: 10.1051/mmnp/2021030
    [23] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109.
    [24] M. S. Abdo, S. K. Panchal, K. Shah, T. Abdeljawad, Existence theory and numerical analysis of three species prey-predator model under Mittag-Leffler power law, Adv. Differ. Equ., 2020 (2020), 1–16. https://doi.org/10.1186/s13662-020-02709-7 doi: 10.1186/s13662-020-02709-7
    [25] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
    [26] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Phys. A: Stat. Mech. Appl., 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056
    [27] K. D. Kucche, S. T. Sutar, Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative, Chaos Solitons Fract., 143 (2021), 110556. https://doi.org/10.1016/j.chaos.2020.110556 doi: 10.1016/j.chaos.2020.110556
    [28] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 2021 (2021), 1–21. https://doi.org/10.1186/s13662-020-03196-6 doi: 10.1186/s13662-020-03196-6
    [29] S. Shabbir, K. Shah, T. Abdeljawad, Stability analysis for a class of implicit fractional differential equations involving Atangana–Baleanu fractional derivative, Adv. Differ. Equ., 2021 (2021), 1–16.
    [30] Y. Cui, Y. Zou, Existence results and the monotone iterative technique for nonlinear fractional differential systems with coupled four-point boundary value problems, Abstr. Appl. Anal., 2014 (2014), 24259. https://doi.org/10.1155/2014/242591 doi: 10.1155/2014/242591
    [31] B. Brunt, A. A. Zaidi, T. Lynch, Cell division and the pantograph equation, ESAIM: Proc. Surv., 62 (2018), 158–167.
    [32] S. Sedaghat, Y. Ordokhani, M. Dehghan, Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4815–4830. https://doi.org/10.1016/j.cnsns.2012.05.009 doi: 10.1016/j.cnsns.2012.05.009
    [33] M. Bahsi, M. Cevik, M. Sezer, Orthoexponential polynomial solutions of delay pantograph differential equations with residual error estimation, Appl. Math. Comput., 271 (2015), 11–21.
    [34] J. K. Hale, S. M. Lunel, Introduction to functional differential equations, Springer Science and Business Media, New York, 2013.
    [35] A. Zeb, G. Nazir, K. Shah, E. Alzahrani, Theoretical and semi-analytical results to a biological model under Atangana-Baleanu-Caputo fractional derivative, Adv. Differ. Equ., 2020 (2020), 1–11. https://doi.org/10.1186/s13662-020-03117-7 doi: 10.1186/s13662-020-03117-7
    [36] A. Akgül, S. A. Khoshnaw, Application of fractional derivative on non-linear biochemical reaction models, Int. J. Intell. Networks, 1 (2020), 52–58. https://doi.org/10.1016/j.ijin.2020.05.001 doi: 10.1016/j.ijin.2020.05.001
    [37] F. M. Khan, Z. U. Khan, Y. P. Lv, A. Yusuf, A. Din, Investigating of fractional order dengue epidemic model with $\mathcal {ABC}$ operator, Results Phys., 24 (2021), 104075.
    [38] J. D. Djida, A. Atangana, I. Area, Numerical computation of a fractional derivative with non-local and non-singular kernel, Math. Model. Nat. Phenom., 12 (2017), 4–13. https://doi.org/10.1051/mmnp/201712302 doi: 10.1051/mmnp/201712302
    [39] T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Equ., 2016 (2016), 1–18. https://doi.org/10.1186/s13662-016-0949-5 doi: 10.1186/s13662-016-0949-5
    [40] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 1–11. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1476) PDF downloads(67) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog