Research article

On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses

  • Received: 08 June 2022 Revised: 16 August 2022 Accepted: 19 August 2022 Published: 30 August 2022
  • MSC : 34B10, 34B15, 34B37

  • Hadamard fractional calculus is one of the most important fractional calculus theories. Compared with a single Hadamard fractional order equation, Hadamard fractional differential equations have a more complex structure and a wide range of applications. It is difficult and challenging to study the dynamic behavior of Hadamard fractional differential equations. This manuscript mainly deals with the boundary value problem (BVP) of a nonlinear coupled Hadamard fractional system involving fractional derivative impulses. By applying nonlinear alternative of Leray-Schauder, we find some new conditions for the existence of solutions to this nonlinear coupled Hadamard fractional system. Our findings reveal that the impulsive function and its impulsive point have a great influence on the existence of the solution. As an application, we discuss an interesting example to verify the correctness and validity of our results.

    Citation: Hui Huang, Kaihong Zhao, Xiuduo Liu. On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses[J]. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055

    Related Papers:

  • Hadamard fractional calculus is one of the most important fractional calculus theories. Compared with a single Hadamard fractional order equation, Hadamard fractional differential equations have a more complex structure and a wide range of applications. It is difficult and challenging to study the dynamic behavior of Hadamard fractional differential equations. This manuscript mainly deals with the boundary value problem (BVP) of a nonlinear coupled Hadamard fractional system involving fractional derivative impulses. By applying nonlinear alternative of Leray-Schauder, we find some new conditions for the existence of solutions to this nonlinear coupled Hadamard fractional system. Our findings reveal that the impulsive function and its impulsive point have a great influence on the existence of the solution. As an application, we discuss an interesting example to verify the correctness and validity of our results.



    加载中


    [1] J. Hadamard, Essai sur l'étude des fonctions données par leur développment de Taylor, J. Math. Pures Appl., 8 (1892), 101–186. Available from: https://eudml.org/doc/233965.
    [2] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. Available from: http://lib.ugent.be/catalog/rug01:002178612.
    [3] K. Diethelm, The analysis of fractional differential equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [4] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [6] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, Singapore: World Scientific, 2012. https://doi.org/10.1142/8180
    [7] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley & Sons, Inc., 1993.
    [8] K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974.
    [9] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069
    [10] K. H. Zhao, K. Wang, Existence of solutions for the delayed nonlinear fractional functional differential equations with three-point integral boundary value conditions, Adv. Differ. Equ., 2016 (2016), 1–18. https://doi.org/10.1186/s13662-016-1012-2 doi: 10.1186/s13662-016-1012-2
    [11] Y. H. Zhang, Z. B. Bai, T. T. Feng, Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance, Comput. Math. Appl., 61 (2011), 1032–1047. https://doi.org/10.1016/j.camwa.2010.12.053 doi: 10.1016/j.camwa.2010.12.053
    [12] K. H. Zhao, P. Gong, Positive solutions of $m$-point multi-term fractional integral BVP involving time-delay for fractional differential equations, Bound. Value Probl., 2015 (2015), 1–19. https://doi.org/10.1186/s13661-014-0280-6 doi: 10.1186/s13661-014-0280-6
    [13] B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton Fract., 83 (2016), 234–241. https://doi.org/10.1016/j.chaos.2015.12.014 doi: 10.1016/j.chaos.2015.12.014
    [14] K. H. Zhao, P. Gong, Positive solutions of nonlocal integral BVPs for the nonlinear coupled system involving high-order fractional differential, Math. Slovaca, 67 (2017), 447–466. https://doi.org/10.1515/ms-2016-0281 doi: 10.1515/ms-2016-0281
    [15] K. H. Zhao, H. Huang, Existence results of nonlocal boundary value problem for a nonlinear fractional differential coupled system involving fractional order impulses, Adv. Differ. Equ., 2019 (2019), 1–13. https://doi.org/10.1186/s13662-019-1982-y doi: 10.1186/s13662-019-1982-y
    [16] B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., 2009 (2009), 1–11. https://doi.org/10.1155/2009/708576 doi: 10.1155/2009/708576
    [17] K. H. Zhao, P. Gong, Positive solutions of Riemann-Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential, Adv. Differ. Equ., 2014 (2014), 1–18. https://doi.org/10.1186/1687-1847-2014-254 doi: 10.1186/1687-1847-2014-254
    [18] B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybrid Syst., 4 (2010), 134–141. https://doi.org/10.1016/j.nahs.2009.09.002 doi: 10.1016/j.nahs.2009.09.002
    [19] K. H. Zhao, Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays, Dyn. Syst., 30 (2015), 208–223. https://doi.org/10.1080/14689367.2014.995595 doi: 10.1080/14689367.2014.995595
    [20] J. R. Wang, Y. Zhou, M. Fe$\breve {\rm{c}}$kan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008–3020. https://doi.org/10.1016/j.camwa.2011.12.064 doi: 10.1016/j.camwa.2011.12.064
    [21] Y. Tian, W. G. Ge, Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Anal., 72 (2010), 277–287. https://doi.org/10.1016/j.na.2009.06.051 doi: 10.1016/j.na.2009.06.051
    [22] K. H. Zhao, P. Gong, Positive solutions for impulsive fractional differential equations with generalizedperiodic boundary value conditions, Adv. Differ. Equ., 2014 (2014), 1–19. https://doi.org/10.1186/1687-1847-2014-255 doi: 10.1186/1687-1847-2014-255
    [23] T. W. Zhang, L. L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072
    [24] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of $\psi$-Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. https://doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142
    [25] M. A. Almalahi, O. Bazighifan, S. K. Panchal, S. S. Askar, G. I. Oros, Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators, Fractal Fract., 5 (2021), 1–21. https://doi.org/10.3390/fractalfract5040178 doi: 10.3390/fractalfract5040178
    [26] M. A. Almalahi, S. K. Panchal, Some properties of implicit impulsive coupled system via $\varphi$-Hilfer fractional operator, Bound. Value Probl., 2021 (2021), 1–22. https://doi.org/10.1186/s13661-021-01543-4 doi: 10.1186/s13661-021-01543-4
    [27] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations, Adv. Differ. Equ., 2020 (2020), 1–16. https://doi.org/10.1186/s13662-020-02615-y doi: 10.1186/s13662-020-02615-y
    [28] H. Khan, C. Tunç, A. Khan, Stability results and existence theorems for nonlinear delay-fractional differential equations with $\varphi_P^*$-operator, J. Appl. Anal. Comput., 10 (2020), 584–597. https://doi.org/10.11948/20180322 doi: 10.11948/20180322
    [29] H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad, A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation, Fractals, 28 (2020), 2040048. https://doi.org/10.1142/S0218348X20400484 doi: 10.1142/S0218348X20400484
    [30] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Study of Hilfer fractional evolution equations by the properties of controllability and stability, Alex. Eng. J., 60 (2021), 3741–3749. https://doi.org/10.1016/j.aej.2021.02.014 doi: 10.1016/j.aej.2021.02.014
    [31] K. H. Zhao, Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control, Axioms, 11 (2022), 1–14. https://doi.org/10.3390/axioms11070350 doi: 10.3390/axioms11070350
    [32] K. H. Zhao, Local exponential stability of four almost-periodic positive solutions for a classic Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms, Int. J. Control, 2022. https://doi.org/10.1080/00207179.2022.2078425 doi: 10.1080/00207179.2022.2078425
    [33] T. W. Zhang, J. W. Zhou, Y. Z. Liao, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives, IEEE Trans. Cybernet., 52 (2002), 9670–9683. https://doi.org/10.1109/TCYB.2021.3054946 doi: 10.1109/TCYB.2021.3054946
    [34] T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [35] T. W. Zhang, Y. K. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
    [36] Z. H. Li, W. Zhang, C. D. Huang, J. W. Zhou, Bifurcation for a fractional-order Lotka-Volterra predator-Cprey model with delay feedback control, AIMS Math., 6 (2021), 675–687. https://doi.org/10.3934/math.2021040 doi: 10.3934/math.2021040
    [37] J. W. Zhou, B. X. Zhou, L. P. Tian, Y. N. Wang, Variational approach for the variable-order fractional magnetic Schrödinger equation with variable growth and steep potential in $\mathbb{R}^{N*}$, Adv. Math. Phys., 2020 (2020), 1–15. https://doi.org/10.1155/2020/1320635 doi: 10.1155/2020/1320635
    [38] J. W. Zhou, B. X. Zhou, Y. N. Wang, Multiplicity results for variable-order nonlinear fractional magnetic Schrödinger equation with variable growth, J. Funct. Space., 2020 (2020), 1–15. https://doi.org/10.1155/2020/7817843 doi: 10.1155/2020/7817843
    [39] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [40] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5
    [41] K. H. Zhao, S. Ma, Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses, AIMS Math., 7 (2022), 3169–3185. https://doi.org/10.3934/math.2022175 doi: 10.3934/math.2022175
    [42] B. Ahmad, S. K. Ntouyas, On Hadamard fractional integro-differential boundary value problems, J. Appl. Math. Comput., 47 (2015), 119–131. https://doi.org/10.1007/s12190-014-0765-6 doi: 10.1007/s12190-014-0765-6
    [43] S. Aljoudi, B. Ahmad, J. J. Nieto, A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Soliton Fract., 91 (2016), 39–46. https://doi.org/10.1016/j.chaos.2016.05.005 doi: 10.1016/j.chaos.2016.05.005
    [44] Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10
    [45] M. Benchohra, S. Bouriah, J. R. Graef, Boundary value problems for nonlinear implicit Caputo-Hadamard-type fractional differential equations with impulses, Mediterr. J. Math., 14 (2017), 1–21. https://doi.org/10.1007/s00009-017-1012-9 doi: 10.1007/s00009-017-1012-9
    [46] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2019 (2019), 1–10. https://doi.org/10.1186/s13662-019-2381-0 doi: 10.1186/s13662-019-2381-0
    [47] Y. Adjabi, F. Jarad, D. Baleanu, T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661–681.
    [48] E. Zeidler, Nonlinear functional analysis and applications Ⅰ: Fixed point theorems, New York: Springer, 1986.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1401) PDF downloads(73) Cited by(21)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog