Hadamard fractional calculus is one of the most important fractional calculus theories. Compared with a single Hadamard fractional order equation, Hadamard fractional differential equations have a more complex structure and a wide range of applications. It is difficult and challenging to study the dynamic behavior of Hadamard fractional differential equations. This manuscript mainly deals with the boundary value problem (BVP) of a nonlinear coupled Hadamard fractional system involving fractional derivative impulses. By applying nonlinear alternative of Leray-Schauder, we find some new conditions for the existence of solutions to this nonlinear coupled Hadamard fractional system. Our findings reveal that the impulsive function and its impulsive point have a great influence on the existence of the solution. As an application, we discuss an interesting example to verify the correctness and validity of our results.
Citation: Hui Huang, Kaihong Zhao, Xiuduo Liu. On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses[J]. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055
Hadamard fractional calculus is one of the most important fractional calculus theories. Compared with a single Hadamard fractional order equation, Hadamard fractional differential equations have a more complex structure and a wide range of applications. It is difficult and challenging to study the dynamic behavior of Hadamard fractional differential equations. This manuscript mainly deals with the boundary value problem (BVP) of a nonlinear coupled Hadamard fractional system involving fractional derivative impulses. By applying nonlinear alternative of Leray-Schauder, we find some new conditions for the existence of solutions to this nonlinear coupled Hadamard fractional system. Our findings reveal that the impulsive function and its impulsive point have a great influence on the existence of the solution. As an application, we discuss an interesting example to verify the correctness and validity of our results.
[1] | J. Hadamard, Essai sur l'étude des fonctions données par leur développment de Taylor, J. Math. Pures Appl., 8 (1892), 101–186. Available from: https://eudml.org/doc/233965. |
[2] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. Available from: http://lib.ugent.be/catalog/rug01:002178612. |
[3] | K. Diethelm, The analysis of fractional differential equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[4] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1 |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[6] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, Singapore: World Scientific, 2012. https://doi.org/10.1142/8180 |
[7] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley & Sons, Inc., 1993. |
[8] | K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974. |
[9] | Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069 |
[10] | K. H. Zhao, K. Wang, Existence of solutions for the delayed nonlinear fractional functional differential equations with three-point integral boundary value conditions, Adv. Differ. Equ., 2016 (2016), 1–18. https://doi.org/10.1186/s13662-016-1012-2 doi: 10.1186/s13662-016-1012-2 |
[11] | Y. H. Zhang, Z. B. Bai, T. T. Feng, Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance, Comput. Math. Appl., 61 (2011), 1032–1047. https://doi.org/10.1016/j.camwa.2010.12.053 doi: 10.1016/j.camwa.2010.12.053 |
[12] | K. H. Zhao, P. Gong, Positive solutions of $m$-point multi-term fractional integral BVP involving time-delay for fractional differential equations, Bound. Value Probl., 2015 (2015), 1–19. https://doi.org/10.1186/s13661-014-0280-6 doi: 10.1186/s13661-014-0280-6 |
[13] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton Fract., 83 (2016), 234–241. https://doi.org/10.1016/j.chaos.2015.12.014 doi: 10.1016/j.chaos.2015.12.014 |
[14] | K. H. Zhao, P. Gong, Positive solutions of nonlocal integral BVPs for the nonlinear coupled system involving high-order fractional differential, Math. Slovaca, 67 (2017), 447–466. https://doi.org/10.1515/ms-2016-0281 doi: 10.1515/ms-2016-0281 |
[15] | K. H. Zhao, H. Huang, Existence results of nonlocal boundary value problem for a nonlinear fractional differential coupled system involving fractional order impulses, Adv. Differ. Equ., 2019 (2019), 1–13. https://doi.org/10.1186/s13662-019-1982-y doi: 10.1186/s13662-019-1982-y |
[16] | B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl., 2009 (2009), 1–11. https://doi.org/10.1155/2009/708576 doi: 10.1155/2009/708576 |
[17] | K. H. Zhao, P. Gong, Positive solutions of Riemann-Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential, Adv. Differ. Equ., 2014 (2014), 1–18. https://doi.org/10.1186/1687-1847-2014-254 doi: 10.1186/1687-1847-2014-254 |
[18] | B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybrid Syst., 4 (2010), 134–141. https://doi.org/10.1016/j.nahs.2009.09.002 doi: 10.1016/j.nahs.2009.09.002 |
[19] | K. H. Zhao, Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays, Dyn. Syst., 30 (2015), 208–223. https://doi.org/10.1080/14689367.2014.995595 doi: 10.1080/14689367.2014.995595 |
[20] | J. R. Wang, Y. Zhou, M. Fe$\breve {\rm{c}}$kan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008–3020. https://doi.org/10.1016/j.camwa.2011.12.064 doi: 10.1016/j.camwa.2011.12.064 |
[21] | Y. Tian, W. G. Ge, Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Anal., 72 (2010), 277–287. https://doi.org/10.1016/j.na.2009.06.051 doi: 10.1016/j.na.2009.06.051 |
[22] | K. H. Zhao, P. Gong, Positive solutions for impulsive fractional differential equations with generalizedperiodic boundary value conditions, Adv. Differ. Equ., 2014 (2014), 1–19. https://doi.org/10.1186/1687-1847-2014-255 doi: 10.1186/1687-1847-2014-255 |
[23] | T. W. Zhang, L. L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072 |
[24] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of $\psi$-Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. https://doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142 |
[25] | M. A. Almalahi, O. Bazighifan, S. K. Panchal, S. S. Askar, G. I. Oros, Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators, Fractal Fract., 5 (2021), 1–21. https://doi.org/10.3390/fractalfract5040178 doi: 10.3390/fractalfract5040178 |
[26] | M. A. Almalahi, S. K. Panchal, Some properties of implicit impulsive coupled system via $\varphi$-Hilfer fractional operator, Bound. Value Probl., 2021 (2021), 1–22. https://doi.org/10.1186/s13661-021-01543-4 doi: 10.1186/s13661-021-01543-4 |
[27] | P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations, Adv. Differ. Equ., 2020 (2020), 1–16. https://doi.org/10.1186/s13662-020-02615-y doi: 10.1186/s13662-020-02615-y |
[28] | H. Khan, C. Tunç, A. Khan, Stability results and existence theorems for nonlinear delay-fractional differential equations with $\varphi_P^*$-operator, J. Appl. Anal. Comput., 10 (2020), 584–597. https://doi.org/10.11948/20180322 doi: 10.11948/20180322 |
[29] | H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad, A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation, Fractals, 28 (2020), 2040048. https://doi.org/10.1142/S0218348X20400484 doi: 10.1142/S0218348X20400484 |
[30] | P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Study of Hilfer fractional evolution equations by the properties of controllability and stability, Alex. Eng. J., 60 (2021), 3741–3749. https://doi.org/10.1016/j.aej.2021.02.014 doi: 10.1016/j.aej.2021.02.014 |
[31] | K. H. Zhao, Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control, Axioms, 11 (2022), 1–14. https://doi.org/10.3390/axioms11070350 doi: 10.3390/axioms11070350 |
[32] | K. H. Zhao, Local exponential stability of four almost-periodic positive solutions for a classic Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms, Int. J. Control, 2022. https://doi.org/10.1080/00207179.2022.2078425 doi: 10.1080/00207179.2022.2078425 |
[33] | T. W. Zhang, J. W. Zhou, Y. Z. Liao, Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives, IEEE Trans. Cybernet., 52 (2002), 9670–9683. https://doi.org/10.1109/TCYB.2021.3054946 doi: 10.1109/TCYB.2021.3054946 |
[34] | T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709 |
[35] | T. W. Zhang, Y. K. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675 |
[36] | Z. H. Li, W. Zhang, C. D. Huang, J. W. Zhou, Bifurcation for a fractional-order Lotka-Volterra predator-Cprey model with delay feedback control, AIMS Math., 6 (2021), 675–687. https://doi.org/10.3934/math.2021040 doi: 10.3934/math.2021040 |
[37] | J. W. Zhou, B. X. Zhou, L. P. Tian, Y. N. Wang, Variational approach for the variable-order fractional magnetic Schrödinger equation with variable growth and steep potential in $\mathbb{R}^{N*}$, Adv. Math. Phys., 2020 (2020), 1–15. https://doi.org/10.1155/2020/1320635 doi: 10.1155/2020/1320635 |
[38] | J. W. Zhou, B. X. Zhou, Y. N. Wang, Multiplicity results for variable-order nonlinear fractional magnetic Schrödinger equation with variable growth, J. Funct. Space., 2020 (2020), 1–15. https://doi.org/10.1155/2020/7817843 doi: 10.1155/2020/7817843 |
[39] | A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |
[40] | P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5 |
[41] | K. H. Zhao, S. Ma, Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses, AIMS Math., 7 (2022), 3169–3185. https://doi.org/10.3934/math.2022175 doi: 10.3934/math.2022175 |
[42] | B. Ahmad, S. K. Ntouyas, On Hadamard fractional integro-differential boundary value problems, J. Appl. Math. Comput., 47 (2015), 119–131. https://doi.org/10.1007/s12190-014-0765-6 doi: 10.1007/s12190-014-0765-6 |
[43] | S. Aljoudi, B. Ahmad, J. J. Nieto, A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Soliton Fract., 91 (2016), 39–46. https://doi.org/10.1016/j.chaos.2016.05.005 doi: 10.1016/j.chaos.2016.05.005 |
[44] | Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10 |
[45] | M. Benchohra, S. Bouriah, J. R. Graef, Boundary value problems for nonlinear implicit Caputo-Hadamard-type fractional differential equations with impulses, Mediterr. J. Math., 14 (2017), 1–21. https://doi.org/10.1007/s00009-017-1012-9 doi: 10.1007/s00009-017-1012-9 |
[46] | G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2019 (2019), 1–10. https://doi.org/10.1186/s13662-019-2381-0 doi: 10.1186/s13662-019-2381-0 |
[47] | Y. Adjabi, F. Jarad, D. Baleanu, T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661–681. |
[48] | E. Zeidler, Nonlinear functional analysis and applications Ⅰ: Fixed point theorems, New York: Springer, 1986. |