Research article

Study of power law non-linearity in solitonic solutions using extended hyperbolic function method

  • Received: 18 March 2022 Revised: 05 July 2022 Accepted: 18 July 2022 Published: 19 August 2022
  • MSC : 35Q51, 35Q53

  • This paper retrieves the optical solitons to the Biswas-Arshed equation (BAE), which is examined with the lack of self-phase modulation by applying the extended hyperbolic function (EHF) method. Novel constructed solutions have the shape of bright, singular, periodic singular, and dark solitons. The achieved solutions have key applications in engineering and physics. These solutions define the wave performance of the governing models. The outcomes show that our scheme is very active and reliable. The acquired results are illustrated by 3-D and 2-D graphs to understand the real phenomena for such sort of non-linear models.

    Citation: Muhammad Imran Asjad, Naeem Ullah, Asma Taskeen, Fahd Jarad. Study of power law non-linearity in solitonic solutions using extended hyperbolic function method[J]. AIMS Mathematics, 2022, 7(10): 18603-18615. doi: 10.3934/math.20221023

    Related Papers:

  • This paper retrieves the optical solitons to the Biswas-Arshed equation (BAE), which is examined with the lack of self-phase modulation by applying the extended hyperbolic function (EHF) method. Novel constructed solutions have the shape of bright, singular, periodic singular, and dark solitons. The achieved solutions have key applications in engineering and physics. These solutions define the wave performance of the governing models. The outcomes show that our scheme is very active and reliable. The acquired results are illustrated by 3-D and 2-D graphs to understand the real phenomena for such sort of non-linear models.



    加载中


    [1] A. Biswas, Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis, Optik, 171 (2018), 217–220. https://doi.org/10.1016/j.ijleo.2018.06.043 doi: 10.1016/j.ijleo.2018.06.043
    [2] A. Biswas, A. J. M. Jawad, Q. Zhou, Resonant optical solitons with anti-cubic nonlinearity, Optik, 157 (2018), 525–531. https://doi.org/10.1016/j.ijleo.2017.11.125 doi: 10.1016/j.ijleo.2017.11.125
    [3] S. Arshed, Two reliable techniques for the soliton solutions of perturbed Gerdjikov-Ivanov equation, Optik, 164 (2018), 93–99. https://doi.org/10.1016/j.ijleo.2018.02.119 doi: 10.1016/j.ijleo.2018.02.119
    [4] M. S. Osman, Nonlinear interaction of solitary waves described by multi-rational wave solutions of the (2+1)-dimensional Kadomtsev-Petviashvili equation with variable coefficients, Nonlinear Dyn., 87 (2017), 1209–1216. https://doi.org/10.1007/s11071-016-3110-9 doi: 10.1007/s11071-016-3110-9
    [5] F. Tahir, M. Younis, H. U. Rehman, Optical Gaussons and dark solitons in directional couplers with spatiotemporal dispersion, Opt. Quant. Electron., 50 (2018), 422. https://doi.org/10.1007/s11082-017-1259-1 doi: 10.1007/s11082-017-1259-1
    [6] N. Ullah, H. Rehman, M. A. Imran, T. Abdeljawad, Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities, Results Phys., 17 (2020), 103021. https://doi.org/10.1016/j.rinp.2020.103021 doi: 10.1016/j.rinp.2020.103021
    [7] Y. Ren, H. Zhang, New generalized hyperbolic functions and auto-Backlund transformations to find new exact solutions of the (2+1)-dimensional NNV equation, Phys. Lett. A, 357 (2006), 438–448. https://doi.org/10.1016/j.physleta.2006.04.082 doi: 10.1016/j.physleta.2006.04.082
    [8] H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh, S. Abbagari, New optical solitons of nonlinear conformable fractional Schrodinger-Hirota equation, Optik, 172 (2018), 545–553. https://doi.org/10.1016/j.ijleo.2018.06.111 doi: 10.1016/j.ijleo.2018.06.111
    [9] M. Quiroga-Teixeiro, H. Michinel, Stable azimuthal stationary state in quintic nonlinear optical media, J. Opt. Soc. Am. B, 14 (1997), 2004–2009. https://doi.org/10.1364/JOSAB.14.002004 doi: 10.1364/JOSAB.14.002004
    [10] H. U. Rehman, N. Ullah, M. A. Imran, Highly dispersive optical solitons using Kudryashov's method, Optik, 199 (2019), 163349. https://doi.org/10.1016/j.ijleo.2019.163349 doi: 10.1016/j.ijleo.2019.163349
    [11] H. U. Rehman, S. Jafar, A. Javed, S. Hussain, M. Tahir, New optical soliotons of Biswas-Arshed equation using different technique, Optik, 206 (2020), 163670. https://doi.org/10.1016/j.ijleo.2019.163670 doi: 10.1016/j.ijleo.2019.163670
    [12] M. Tahir, A. U. Awan, H. U. Rehman, Dark and singular optical solitons to the Biswas-Arshed model with Kerr and power law nonlinearity, Optik, 185 (2019), 777–783. https://doi.org/10.1016/j.ijleo.2019.03.108 doi: 10.1016/j.ijleo.2019.03.108
    [13] P. K. Das, Chirped and chirp-free optical exact solutions of the Biswas-Arshed equation with full nonlinearity by the rapidly convergent approximation method, Optik, 223 (2020), 165293. https://doi.org/10.1016/j.ijleo.2020.165293 doi: 10.1016/j.ijleo.2020.165293
    [14] Z. Korpinar, M. Inc, M. Bayram, M. S. Hashemi, New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity, Optik, 206 (2020), 163332. https://doi.org/10.1016/j.ijleo.2019.163332 doi: 10.1016/j.ijleo.2019.163332
    [15] M. Tahir, A. U. Awan, Optical singular and dark solitons with Biswas-Arshed model by modified simple equation method, Optik, 202 (2020), 163523. https://doi.org/10.1016/j.ijleo.2019.163523 doi: 10.1016/j.ijleo.2019.163523
    [16] M. Ekici, A. Sonmezoglu, Optical solitons with Biswas-Arshed equation by extended trial function method, Optik, 177 (2019), 13–20. https://doi.org/10.1016/j.ijleo.2018.09.134 doi: 10.1016/j.ijleo.2018.09.134
    [17] B. Karaagac, New exact solutions for some fractional order differential equations via improved sub-equation method, Discret Cont. Dyn. S, 12 (2019), 447–54. https://doi.org/10.3934/dcdss.2019029 doi: 10.3934/dcdss.2019029
    [18] M. Alam, F. Belgacem, Microtubules nonlinear models dynamics investigations through the exp$(G'(G))$-expansion method implementation, Mathematics, 4 (2016), 6. https://doi.org/10.3390/math4010006 doi: 10.3390/math4010006
    [19] A. Sonmezoglu, Exact solutions for some fractional differential equations, Adv. Math. Phys., 2015 (2015), 567842. https://doi.org/10.1155/2015/567842 doi: 10.1155/2015/567842
    [20] R. Saleh, M. Kassem, S. M. Mabrouk, Exact solutions of nonlinear fractional order partial differential equations via singular manifold method, Chinese J. Phys., 61 (2019), 290–300. https://doi.org/10.1016/j.cjph.2019.09.005 doi: 10.1016/j.cjph.2019.09.005
    [21] M. Iqbal, A. R. Seadawy, D. Lu, Construction of solitary wave solutions to the nonlinear modified Kortewegede Vries dynamical equation in unmagnetized plasma via mathematical methods, Mod. Phys. Lett. A, 33 (2018), 1850183. https://doi.org/10.1142/S0217732318501833 doi: 10.1142/S0217732318501833
    [22] M. N. Alam, C. Tunc, Constructions of the optical solitons and others soliton to the conformable fractional zakharov-kuznetsov equation with power law nonlinearity, J. Taibah Univ. Sci., 14 (2020), 94–100. https://doi.org/10.1080/16583655.2019.1708542 doi: 10.1080/16583655.2019.1708542
    [23] N. Kadkhoda, H. Jafari, An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations, Adv. Differ. Equ., 2019 (2019), 428. https://doi.org/10.1186/s13662-019-2349-0 doi: 10.1186/s13662-019-2349-0
    [24] A. R. Seadawy, Three-dimensional weakly nonlinear shallow water waves regime and its travelling wave solutions, Int. J. Comp. Meth., 15 (2018), 1850017. https://doi.org/10.1142/S0219876218500172 doi: 10.1142/S0219876218500172
    [25] S. Tian, J. M. Tu, T. T. Zhang, Y. R. Chen, Integrable discretizations and soliton solutions of an Eckhaus-Kundu equation, Appl. Math. Lett., 122 (2021), 107507. https://doi.org/10.1016/j.aml.2021.107507 doi: 10.1016/j.aml.2021.107507
    [26] S. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, P. Roy. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455
    [27] S. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056. https://doi.org/10.1016/j.aml.2019.106056 doi: 10.1016/j.aml.2019.106056
    [28] S. Tian, D. Guo, X. Wang, T. Zhang, Traveling wave, lump Wave, rogue wave, multi-kink solitary wave and interaction solutions in a (3+1)-dimensional Kadomtsev-Petviashvili equation with Backlund transformation, J. Appl. Anal. Comput., 11 (2021), 45–58. https://doi.org/10.11948/20190086 doi: 10.11948/20190086
    [29] B. Q. Li, Optical rogue wave structures and phase transitions in a light guide fiber system doped with two-level resonant atoms, Optik, 253 (2022), 168541. https://doi.org/10.1016/j.ijleo.2021.168541 doi: 10.1016/j.ijleo.2021.168541
    [30] B. Q. Li, Y. L. Ma, Interaction properties between rogue wave and breathers to the manakov system arising from stationary self-focusing electromagnetic systems, Chaos Soliton. Fract., 156 (2022), 111832. https://doi.org/10.1016/j.chaos.2022.111832 doi: 10.1016/j.chaos.2022.111832
    [31] B. Q. Li, Interaction behaviors between breather and rogue wave in a Heisenberg ferromagnetic equation, Optik, 227 (2020), 166101. https://doi.org/10.1016/j.ijleo.2020.166101 doi: 10.1016/j.ijleo.2020.166101
    [32] B. Q. Li, Y. L. Ma, Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation, Nonlinear Dyn., 102 (2020), 1787–1799. https://doi.org/10.1007/s11071-020-06024-4 doi: 10.1007/s11071-020-06024-4
    [33] B. Q. Li, Y. L. Ma, N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics, Nonlinear Dyn., 101 (2020), 2449–2461. https://doi.org/10.1007/s11071-020-05906-x doi: 10.1007/s11071-020-05906-x
    [34] Y. Shang, The extended hyperbolic function method and exact solutions of the long-short wave resonance equations, Chaos Soliton. Fract., 36 (2008), 762–771. https://doi.org/10.1016/j.chaos.2006.07.007 doi: 10.1016/j.chaos.2006.07.007
    [35] Y. Shang, Y. Huang, W. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput., 200 (2008), 110–122. https://doi.org/10.1016/j.amc.2007.10.059 doi: 10.1016/j.amc.2007.10.059
    [36] S. Nestor, A. Houwe, G. Betchewe, M. Inc, S. Y. Doka, A series of abundant new optical solitons to the conformable space-time fractional perturbed nonlinear Schrödinger equation, Phys. Scr., 95 (2020), 085108. https://doi.org/10.1088/1402-4896/ab9dad doi: 10.1088/1402-4896/ab9dad
    [37] K. S. Nisar, A. Ahmad, M. Inc, M. Farman, H. Rezazadeh, L. Akinyemi, et al., Analysis of dengue transmission using fractional order scheme, AIMS Math., 7 (2022), 8408–8429. https://doi.org/10.3934/math.2022469 doi: 10.3934/math.2022469
    [38] M. S. Hashemi, H. Rezazadeh, H. Almusawa, H. Ahmad, A Lie group integrator to solve the hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet, AIMS Math., 6 (2021), 13392–13406. https://doi.org/10.3934/math.2021775 doi: 10.3934/math.2021775
    [39] M. X. Zhou, A. S. V. Ravi Kanth, K. Aruna, K. Raghavendar, H. Rezazadeh, M. Inc, et al., Numerical solutions of time fractional Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives, J. Funct. Space., 2021 (2021), 9884027. https://doi.org/10.1155/2021/9884027 doi: 10.1155/2021/9884027
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1329) PDF downloads(70) Cited by(2)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog