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Abstract: This paper retrieves the optical solitons to the Biswas-Arshed equation (BAE), which is
examined with the lack of self-phase modulation by applying the extended hyperbolic function (EHF)
method. Novel constructed solutions have the shape of bright, singular, periodic singular, and dark
solitons. The achieved solutions have key applications in engineering and physics. These solutions
define the wave performance of the governing models. The outcomes show that our scheme is very
active and reliable. The acquired results are illustrated by 3-D and 2-D graphs to understand the real
phenomena for such sort of non-linear models.
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1. Introduction

Solitons have much importance in various areas of science and nature, such as waves, geology,
wave propagation, population ecology, fluid dynamics, computer science, biology, plasmas, heat,
birefringent fibers, mechanics and optics. There are many mathematical models that efficiently
demonstrate the properties of soliton transmission such as Radhakrishnan-Kundu-Lakshmanan
equation [1], the resonant nonlinear Schrodinger’s equation [2] and so on [3–10]. The key object for
the presence of solitons in the optical fibers is to keep balance between group velocity
dispersion (GVD) and non-linearity. In special conditions, there may be circumstances which produce
small non-linearity and low GVD. Recently, Biswas and Arshed [11–16], estimated a precise creative
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clue to grip the circumstances where non-linearity and GVD are small, which is presented in the
model called BAE. This governing model can act as a feasible model to study the properties of
solitons in crystals, Photonic crystal fiber, and optical fibers. Waves and solitons describe many real
life phenomena. Several meaningful techniques have been recognized for solving wave structures of
non-linear partial differential equations, such as the improved sub-equation scheme [17], expansion
approach [18], extended Jacobi elliptic function expansion method [19], singular manifold
method [20], modified fractional reduced differential transform method [21],
modified (G′/G)-expansion approach [22], Sine-Gordon expansion method [23], extended modified
mapping method [24], Hirota’s bilinear method [25], the power series method [26], Lie symmetry
method [27], Backlund transformation method [28], the generalized Darboux transformation [29], the
Darboux transformation method [30], the extended Darboux transformation technique [31], the Hirota
bilinear method [32], and the generalized Darboux transformation scheme [33]. This article studies
the BAE with power law via the EHF method [34–36], which leads to the construction of singular,
bright, dark-bright and periodic-singular optical soliton solutions. In the future, we will use fractional
calculus to construct analytical solutions of nonlinear models under the Atangana-Baleanu derivative
in Caputo sense (ABC) with the help of the Sumudu transform [37], group preserving scheme [38]
and time-fractional Zakharov-Kuznetsov equation via the natural transform decomposition method
with nonsingular kernel derivatives [39]. Studies on the physical behaviors of these non-linear models
using different analytical methods have gained a lot of attention recently. In physics and engineering,
a large number of non-linear dispersive models appear that have a large area of applications. These
general solutions can also provide a useful help for researchers to study and understand the physical
interpretations of systems.

The layouts of this paper are as follows. The governing model is described in Section 2. Analysis
of the proposed EHF method is presented in Section 3. In Section 4 the EHF method is applied, and
Section 5 consists of the findings and discussions. Conclusions of this paper are posted in Section 6.

2. Biswas-Arshed equation

The BAE with full non-linearity [11–16] is given by

iut + a1uxx + a2uxt + i(b1uxxx + b2uxxt) = i[φ(|u|2nu)x + σ(|u|2n)xu + θ|u|2nux], (2.1)

where u(x, t) and n are a complex-valued function and full non-linearity parameter, respectively. On the
left of the (2.1), a1 and a2 indicate the temporal evolution, coefficient of GVD and coefficient of STD,
respectively. Next, b1 and b2 are coefficients of 3OD and STD. θ and σ represent the effect of self-
steepening and non-linear dispersion in the absence of SPM. This effect of dispersion and non-linearity
provides the required balance for solitons, existence.

Assume that

u(x, t) = P(η)eiΨ(x,t), (2.2)

where P(η) indicates the amplitude, and

η = x − ct, Ψ(x, t) = −kx + wt + ε, (2.3)
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where c and Ψ(x, t) are the velocity and the phase component. k, w are frequency and wave number,
accordingly, while ε is the phase constant of solitons. Inserting (2.2) and (2.3) in (2.1) and separating
into real and imaginary parts, the real part gives

− (w + a1k2 + b1k3 − a2wk − b2wk2)P + (a1 + 3b1k − a2c − 2b2ck − b2w)P′′ = k(θ + φ)P2n+1, (2.4)

while the imaginary part gives

(−3b1k2 + b2ck2 + 2b2wk − 2a1k − c + a2ck + a2w)P′ + (−b2c + b1)P′′′

= [θ + 2nσ + (2n + 1)φ]P2nP′. (2.5)

Integrating (2.5) and taking the integration constant to be zero, we obtain

(−3b1k2 + b2ck2 + 2b2wk − 2a1k − c + a2ck + a2w)P + (−b2c + b1)P′′

= [θ + 2nσ + (2n + 1)φ]P2n. (2.6)

To get the solutions, we use following substitution:

P = W1/2n. (2.7)

Equations (2.4) and (2.6), yield

(a1 + 3b1k − a2c − b2w − 2b2ck)[(1 − 2n)(W ′)2 + 2nWW ′′]
−4n2(w + a1k2 + b1k3 − a2wk − b2wk2)W2 − 4n2k(θ + φ)W3 = 0, (2.8)

(2n + 1)(b1 − b2c)[(1 − 2n)(W ′)2 + 2nWW ′′] − 4n2[2nσ + θ + (2n + 1)φ]W3

+(−2a1k − 3b1k2 + b2ck2 + 2b2wk + a2ck − c + a2w)4n2(2n + 1)[(1 − 2n)(W ′)2

+2nWW ′′]W2 = 0. (2.9)

As W(ξ) satisfies (2.8) and (2.9), the constraint conditions are as follows:

(a1 − a2c + 3b1k − 2b2ck − b2w)
(2n + 1)(b1 − b2c)

=
(θ + φ)k

2nσ + θ + (2n + 1)φ

=
−(w + a1k2 + b1k3 − a2wk − b2wk2)

(2n + 1)(b2ck2 − 3b1k2 + 2b2wk − 2a1k + a2ck − c + a2w)
. (2.10)

Now, (2.8) is analyzed using the extended hyperbolic function method.
Setting A = b2ck2 − 3b1k2 + 2b2wk− 2a1k + a2ck− c + a2w and B = w + a1k2 − a2wk + b1k3 − b2wk2,

gives

A[(1 − 2n)(W ′)2 + 2nWW ′′] − 4n2BW2 − 4n2k(θ + φ)W3 = 0. (2.11)
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3. The EHF method

Two phases of the EHF method are as follows:
Form 1: Let (2.11) have the solution

W(η) =

N∑
j=0

F jΦ
j(η), (3.1)

where F j are constants and Φ(η) satisfies the auxiliary ODE as

dΦ

dη
= Φ

√
τ + µ Φ2, τ, µ ∈ R. (3.2)

To find the number N, we use the balancing rule on (2.11). Substituting (3.1) in (2.11) along
with (3.2) produces a system of algebraic equations for F j (0 ≤ j ≤ N). A set of solutions is acquired
by solving this system, that accepts (3.2) as
Set 1: If τ > 0 and µ > 0,

Φ(η) = −

√
τ

µ
csch(

√
τ(η + η0)). (3.3)

Set 2: If τ < 0 and µ > 0,

Φ(η) =

√
−τ

µ
sec(
√
−τ(η + η0)). (3.4)

Set 3: If τ > 0 and µ < 0,

Φ(η) =

√
τ

−µ
sech(

√
τ(η + η0)). (3.5)

Set 4: If τ < 0 and µ > 0,

Φ(η) =

√
−τ

µ
csc(
√
−τ(η + η0)). (3.6)

Set 5: If τ > 0 and µ = 0,

Φ(η) = exp(
√
τ(η + η0)). (3.7)

Set 6: If τ < 0 and µ = 0,

Φ(η) = cos(
√
−τ(η + η0)) + i sin(

√
−τ(η + η0)). (3.8)

Set 7: If τ = 0 and µ > 0,

Φ(η) = ±
1

(
√
µ(η + η0))

. (3.9)
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Set 8: If τ = 0 and µ < 0,

Φ(η) = ±
i

(
√
−µ(η + η0))

. (3.10)

Form 2: Adopting the same pattern as above, assume (3.1) satisfies the auxiliary ODE as follows:

dΦ

dη
= τ + µΦ2, τ, µ ∈ R. (3.11)

Substituting (3.1) into (2.11) with (3.11) yields the value of N, and it provides a set equations.
Assume (3.11) has the solutions as follows:
Set 1: If τµ > 0,

Φ(η) = sn(τ)
√
τ

µ
tan(
√
τµ(η + η0)). (3.12)

Set 2: If τµ > 0,

Φ(η) = −sn(τ)
√
τ

µ
cot(
√
τµ(η + η0)). (3.13)

Set 3: If τµ < 0,

Φ(η) = sn(τ)
√

τ

−µ
tanh(

√
−τµ(η + η0)). (3.14)

Set 4: If τµ < 0,

Φ(η) = sn(τ)
√

τ

−µ
coth(

√
−τµ(η + η0)). (3.15)

Set 5: If τ = 0 and µ > 0,

Φ(η) = −
1

µ(η + η0)
. (3.16)

Set 6: If τ ∈ R and µ = 0,

Φ(η) = τ(η + η0). (3.17)

Note: sn is the well-known sign function.

4. Application of the EHF method

Form 1: In this section, we utilize the above said method to solve the BAE with power law non-
linearity. Using the balance principle in (2.11), yields N = 2, so (3.1) converts to

W(η) = F0 + F1Φ(η) + F2(Φ(η))2, (4.1)
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where F0, F1 and F2 are constants. Inserting (4.1) in (2.11), one attains a set of equations in
F0, F1, F2, τ and µ is obtained. On working the set of equations, we achieve

F0 = 0, F1 = 0,

F2 = F2, τ = −
Bn2

2An − 2n − A
,

µ = −
k n2(θ + φ)F2

2An − 3n − A
. (4.2)

Set 1: If τ > 0 and µ > 0,

u1(x, t) =

F2

(
−

√
B(−3n + A(−1 + 2n))

k(−2n + A(−1 + 2n))(θ + φ)F2
csch(

√
−

Bn2

2An − 2n − A
(η + η0))

)2


1/2n

×(eιΨ(x, t)). (4.3)

Set 2: If τ < 0 and µ > 0,

u2(x, t) =

F2

(√
−

B(−3n + A(−1 + 2n))
k(−2n + A(−1 + 2n))(θ + φ)F2

sec(

√
B n2

2An − 2n − A
(η + η0))

)2


1/2n

×(eιΨ(x, t)). (4.4)

Set 3: If τ > 0 and µ < 0,

u3(x, t) =

F2

(√
−

B(−3n + A(−1 + 2n))
k(−2n + A(−1 + 2n))(θ + φ)F2

sech(

√
−

B n2

2An − 2n − A
(η + η0))

)2


1/2n

×(eιΨ(x, t)). (4.5)

Set 4: If τ < 0 and µ > 0,

u4(x, t) =

F2

(√
−

B(−3n + A(−1 + 2n))
k(−2n + A(−1 + 2n))(θ + φ)F2

csc(

√
B n2

2An − 2n − A
(η + η0))

)2


1/2n

×(eιΨ(x, t)). (4.6)

Set 5: If τ > 0 and µ = 0,

u5(x, t) =

F2

(
exp(

√
−

Bn2

2An − 2n − A
(η + η0))

)2
1/2n

× (eιΨ(x, t)). (4.7)

Set 6: If τ < 0 and µ = 0,

u6(x, t) =

F2

(
cos(

√
Bn2

2An − 2n − A
(η + η0)) + i sin(

√
B n2

2An − 2n − A
(η + η0))

)2
1/2n
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×(eιΨ(x, t)). (4.8)

Where Ψ(x, t) = −kx + wt + ε, η = x − ct.
Form 2: Using the balance principle on (2.11), yields N = 2, so (3.1) gives

W(η) = F0 + F1Φ(η) + F2(Φ(η))2, (4.9)

where F0, F1 and F2 are constants. Inserting (4.9) in (2.11) and comparing the coefficients of each
polynomial of Φ(η) to zero, we retrieve a set of equations in F0, F1, F2, τ and µ.

Working on the set of equations, we acquire

F0 =
(A(1 − 2n) + 3n)B

k(θA(1 − 2n) + 2nθ + φA(1 − 2n) + 2nφ)
,

F1 = 0, F2 =
µ2(A(1 − 2n) + 3n)

kn2(φ + θ)
,

τ = −
Bn2

(2n + A(1 − 2n))µ
, µ = µ. (4.10)

Set 1: If τµ > 0,

u9(x, t) =

[ (A(1 − 2n) + 3n)B
k(θA(1 − 2n) + 2nθ + φA(1 − 2n) + 2nφ)

+F2

(
χ

√
−

Bn2

(2n + A(1 − 2n))µ2 tan(

√
−

Bn2

A + 2n − 2An
(η + η0))

)2]1/2n

× (eιΨ(x, t)). (4.11)

Set 2: If τµ > 0,

u10(x, t) =

[ (A(1 − 2n) + 3n)B
k(θA(1 − 2n) + 2nθ + φA(1 − 2n) + 2nφ)

+F2

(
χ

√
−

Bn2

(2n + A(1 − 2n))µ2 cot(

√
−

Bn2

A + 2n − 2An
(η + η0))

)2]1/2n

× (eιΨ(x, t)). (4.12)

Set 3: If τµ < 0,

u11(x, t) =

[ (A(1 − 2n) + 3n)B
k(θA(1 − 2n) + 2nθ + φA(1 − 2n) + 2nφ)

+F2

(
χ

√
Bn2

(2n + A(1 − 2n))µ2 tanh(

√
Bn2

A + 2n − 2An
(η + η0))

)2]1/2n

× (eιΨ(x, t)). (4.13)

Set 4: If τµ < 0,

u12(x, t) =

[ (A(1 − 2n) + 3n)B
k(θA(1 − 2n) + 2nθ + φA(1 − 2n) + 2nφ)

+F2

(
χ

√
Bn2

(2n + A(1 − 2n))µ2 coth(

√
Bn2

A + 2n − 2An
(η + η0))

)2]1/2n

× (eιΨ(x, t)), (4.14)

where χ = sgn(− Bn2

(2n+A(1−2n))µ ), Ψ(x, t) = −kx + wt + ε, η = x − ct.
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5. Results and discussion

We illustrated the solutions of the BAE in the form of optical solitons using the EHF method.
These solutions have applications in telecommunication to transfer information, as solitons have the
proficiency to travel long spaces without distortion and without altering their shapes. In this work, we
added selected graphical representations of some solutions of the BAE to dodge overcrowded the
manuscript. Figures 1–6 represent 2-D and 3-D plots of some optical solitons of (2.1), with the help
of parameters involved. Figures 1 and 6 demonstrate the solutions obtained given in (4.3) and (4.14),
accordingly, which are singular soliton waves. Figures 2 and 4 demonstrate the solutions (4.4)
and (4.11), which are periodic singular soliton waves. Solution (4.5) given by Figure 3, represents a
bright soliton, and solution (4.13) provides a dark soliton and is shown by Figure 5. These results
reveal that the bright solitons are favorable in watching the order of the solitons. It is helpful to the
eliminate internet jam that is a big problem nowadays in industry. With the recent disease of
COVID-19, everywhere commercial dealings are being conducted virtually, and it is necessary to
preserve a continuous flow of Internet communications. Similarly, dark solitons are too encouraging
for soliton communication in the presence of background wave. Though, singular solitons are just
involved the figure of solitons and display a whole band of soliton solutions formed using the model.

− 4− 4− 2− 2
00
xx

00
− 4− 4

0.10.1

22

0.20.2

− 2− 2

0.30.3

zz
0.40.4

00

0.50.5

tt

0.60.6

0.70.7

22 44 44

Figure 1. (a) 3D plot of singular soliton solution (4.3) with F2 = 1.7, A = −2.7, B =

11.4, n = 1 k = −2, θ = −4, φ = 0.8, ω = 3, c = 2.5, ε = −4. (b) 2D representation of
(4.3) using t = 1.
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Figure 2. (c) 3D plot of periodic-singular soliton solution (4.4) with F2 = 1.7, A =

−2.7, B = 11.4, n = 1 k = −2, θ = −4, φ = 0.8, ω = 3, ε = 4, c = 2.5. (d) 2D
representation of (4.4) with t = 1.
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Figure 3. (e) 3D plot of bright soliton solution (4.5) for F2 = 1.7, A = −2.7, B = 11.4, n =

1 k = −2, θ = −4, φ = 0.8, ω = 3, ε = −4, c = 2.5. (f) 2D representation of (4.5) for
t = 1.

− 2− 2
− 1− 1

00
xx

− 2− 2
00

1000010000

2000020000

− 1− 1

3000030000

4000040000

11

zz5000050000

00

6000060000

tt

7000070000

8000080000

9000090000

11 22

Figure 4. (g) 3D graph of periodic-singular soliton solution (4.11) for F2 = 1.7, A =

−2.7, B = 11.4, n = 1 k = −2, θ = −4, φ = 0.8, ω = 3, ε = −4, c = 2.5. (h) 2D
representation of (4.11) for t = 1.
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Figure 5. (i) 3D graph of singular soliton solution (4.13) for F2 = 1.7, A = −2.7, B =

11.4, n = 1 k = −2, θ = −4, φ = 0.8, ω = 3, ε = −4, c = 2.5. (j) 2D representation of
(4.13) for t = 1.
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Figure 6. (k) 3D graph of periodic-singular soliton solution (4.14) with F2 = 1.7, A =

−2.7, B = 11.4, n = 1 k = −2, θ = −4, φ = 0.8, ω = 3, ε = −4, c = 2.5. (l) 2D
representation of (4.14) for t = 1.

6. Conclusions

In this paper, we have successfully employed the EHF method on the BAE and constructed the
bright, periodic, dark, singular and combo solitons. These constructed results have much importance
in many areas of non-linear sciences, such as physics, birefringent fibers, applied mathematics, optical
fibers, engineering, pulse propagation and many more. The outcomes of this study are motivating and
improve our understanding of the optical soliton solutions. By these outcomes, we can recognize that
the present method is appropriate, useful and skilled for attaining the exact solutions of such kind of
problems. The acquired results are fresh, correct and not reported earlier in literature.
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