Research article

Extended Prudnikov sum

  • Received: 31 May 2022 Revised: 15 August 2022 Accepted: 16 August 2022 Published: 19 August 2022
  • MSC : 30E20, 33-01, 33-03, 33-04

  • A Prudnikov sum is extended to derive the finite sum of the Hurwitz-Lerch Zeta function in terms of the Hurwitz-Lerch Zeta function. This formula is then used to evaluate a number trigonometric sums and products in terms of other trigonometric functions. These sums and products are taken over positive integers which can be simplified in certain circumstances. The results obtained include generalizations of linear combinations of the Hurwitz-Lerch Zeta functions and involving powers of 2 evaluated in terms of sums of Hurwitz-Lerch Zeta functions. Some of these derivations are in the form of a new recurrence identity and finite products of trigonometric functions.

    Citation: Robert Reynolds, Allan Stauffer. Extended Prudnikov sum[J]. AIMS Mathematics, 2022, 7(10): 18576-18586. doi: 10.3934/math.20221021

    Related Papers:

  • A Prudnikov sum is extended to derive the finite sum of the Hurwitz-Lerch Zeta function in terms of the Hurwitz-Lerch Zeta function. This formula is then used to evaluate a number trigonometric sums and products in terms of other trigonometric functions. These sums and products are taken over positive integers which can be simplified in certain circumstances. The results obtained include generalizations of linear combinations of the Hurwitz-Lerch Zeta functions and involving powers of 2 evaluated in terms of sums of Hurwitz-Lerch Zeta functions. Some of these derivations are in the form of a new recurrence identity and finite products of trigonometric functions.



    加载中


    [1] National Institute of Standards and Technology, NIST Digital Library of Mathematical Functions, 2010. Available from: https://dlmf.nist.gov/.
    [2] T. M. Apostol, Introduction to analytic number theory, New York: Springer, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [3] T. Nakamura, The universality for linear combinations of Lerch Zeta functions and the Tornheim–Hurwitz type of double Zeta functions, Monatsh. Math., 162 (2011), 167–178. https://doi.org/10.1007/s00605-009-0164-5 doi: 10.1007/s00605-009-0164-5
    [4] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and series: Volume 1: Elementary functions, New York: Gordon & Breach Science Publishers, 1986.
    [5] S. Khan, S. Zaman, S. Ul Islam, Approximation of Cauchy-type singular integrals with high frequency Fourier kernel, Eng. Anal. Bound. Elem., 130 (2021), 209–219. https://doi.org/10.1016/j.enganabound.2021.05.017 doi: 10.1016/j.enganabound.2021.05.017
    [6] R. Reynolds, A. Stauffer, A method for evaluating definite integrals in terms of special functions with examples, International Mathematical Forum, 15 (2020), 235–244. https://doi.org/10.12988/imf.2020.91272 doi: 10.12988/imf.2020.91272
    [7] A. Erdéyli, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Vol 1, New York: McGraw-Hill Book Company Inc., 1953.
    [8] I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, series and products, 6 Eds., Cambridge, MA, USA: Academic Press, 2000. https://doi.org/10.1016/B978-0-12-294757-5.X5000-4
    [9] R. Gelca, T. Andreescu, Putnam and beyond, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-58988-6
    [10] K. B. Oldham, J. C. Myland, J. Spanier, An atlas of functions, 2 Eds., New York: Springer, 2009. https://doi.org/10.1007/978-0-387-48807-3
    [11] R. Reynolds, A. Stauffer, A note on the infinite sum of the Lerch function, Eur. J. Pure Appl. Math., 15 (2022), 158–168. https://doi.org/10.29020/nybg.ejpam.v15i1.4137 doi: 10.29020/nybg.ejpam.v15i1.4137
    [12] P. L. Duren, Invitation to classical analysis, American Mathematical Society, 2012.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1801) PDF downloads(72) Cited by(2)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog