Research article Special Issues

Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives

  • Received: 02 July 2022 Revised: 12 July 2022 Accepted: 25 July 2022 Published: 15 August 2022
  • MSC : 34A34, 35A20, 35A22, 44A10, 33B15

  • The approximate solution of the Kersten-Krasil'shchik coupled Korteweg-de Vries-modified Korteweg-de Vries system is obtained in this study by employing a natural decomposition method in association with the newly established Atangana-Baleanu derivative and Caputo-Fabrizio derivative of fractional order. The Korteweg-de Vries equation is considered a classical super-extension in this system. This nonlinear model scheme is commonly used to describe waves in traffic flow, electromagnetism, electrodynamics, elastic media, multi-component plasmas, shallow water waves and other phenomena. The acquired results are compared to exact solutions to demonstrate the suggested method's effectiveness and reliability. Graphs and tables are used to display the numerical results. The results show that the natural decomposition technique is a very user-friendly and reliable method for dealing with fractional order nonlinear problems.

    Citation: M. Mossa Al-Sawalha, Rasool Shah, Adnan Khan, Osama Y. Ababneh, Thongchai Botmart. Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives[J]. AIMS Mathematics, 2022, 7(10): 18334-18359. doi: 10.3934/math.20221010

    Related Papers:

  • The approximate solution of the Kersten-Krasil'shchik coupled Korteweg-de Vries-modified Korteweg-de Vries system is obtained in this study by employing a natural decomposition method in association with the newly established Atangana-Baleanu derivative and Caputo-Fabrizio derivative of fractional order. The Korteweg-de Vries equation is considered a classical super-extension in this system. This nonlinear model scheme is commonly used to describe waves in traffic flow, electromagnetism, electrodynamics, elastic media, multi-component plasmas, shallow water waves and other phenomena. The acquired results are compared to exact solutions to demonstrate the suggested method's effectiveness and reliability. Graphs and tables are used to display the numerical results. The results show that the natural decomposition technique is a very user-friendly and reliable method for dealing with fractional order nonlinear problems.



    加载中


    [1] M. Caputo, Linear models of dissipation whose $Q$ is almost frequency independent–II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [2] K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Academic Press, 1974.
    [3] R. Gorenflo, F. Mainardi, Fractional calculus, In: Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997,223–276. https://doi.org/10.1007/978-3-7091-2664-6_5
    [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, 1993.
    [5] E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542–553. https://doi.org/10.1016/j.jmaa.2006.01.087 doi: 10.1016/j.jmaa.2006.01.087
    [6] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, 1999.
    [7] A. Atangana, E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of $CD4^{+}$ cells and attractor one-dimensional Keller-Segel equations, Adv. Differ. Equ., 2013 (2013), 1–14. https://doi.org/10.1186/1687-1847-2013-94 doi: 10.1186/1687-1847-2013-94
    [8] S. Kumar, H. Kocak, A. Yıldırım, A fractional model of gas dynamics equations and its analytical approximate solution using Laplace transform, Z. Naturforschung A, 67 (2012), 389–396. https://doi.org/10.5560/zna.2012-0038 doi: 10.5560/zna.2012-0038
    [9] F. Yin, J. Q. Song, X. Q. Cao, A general iteration formula of VIM for fractional heat- and wave-like equations, J. Appl. Math., 2013 (2013), 1–9. https://doi.org/10.1155/2013/428079 doi: 10.1155/2013/428079
    [10] A. S. Arife, S. K. Vanani, F. Soleymani, The Laplace homotopy analysis method for solving a general fractional diffusion equation arising in nano-hydrodynamics, J. Comput. Theor. Nanos., 10 (2013), 33–36.
    [11] H. Beyer, S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, ZAMM Z. Angew. Math. Mech., 75 (1995), 623–635. https://doi.org/10.1002/zamm.19950750820 doi: 10.1002/zamm.19950750820
    [12] M. K. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. S. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [13] K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a Novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [14] Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations within Caputo operator and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 1–23. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
    [15] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [16] N. A. Shah, E. R. El-Zahar, A. Akgül, A. Khan, J. Kafle, Analysis of fractional-order regularized long-wave models via a Novel transform, J. Funct. Space., 2022 (2022), 1–16. https://doi.org/10.1155/2022/2754507 doi: 10.1155/2022/2754507
    [17] A. A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a Novel transform, Complexity, 2022 (2022), 1–24. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
    [18] A. Khan, U. Nigar, H. Chaudhary, Secure communication and synchronization dynamics in chaotic Chua's system via adaptive sliding mode control technique, Int. J. Appl. Comput. Math., 8 (2022), 1–20. https://doi.org/10.1007/s40819-022-01378-2 doi: 10.1007/s40819-022-01378-2
    [19] M. Türkyilmazoǧlu, Nonlinear problems via a convergence accelerated decomposition method of Adomian, 2021.
    [20] M. Naeem, A. M. Zidan, K. Nonlaopon, M. I. Syam, Z. Al-Zhour, R. Shah, A new analysis of fractional-order equal-width equations via novel techniques, Symmetry, 13 (2021), 1–20. https://doi.org/10.3390/sym13050886 doi: 10.3390/sym13050886
    [21] N. Iqbal, A. Akgül, R. Shah, A. Bariq, M. M. Al-Sawalha, A. Ali, On solutions of fractional-order gas dynamics equation by effective techniques, J. Funct. Space., 2022 (2022), 1–14. https://doi.org/10.1155/2022/3341754 doi: 10.1155/2022/3341754
    [22] P. Sunthrayuth, A. M. Zidan, S. W. Yao, R. Shah, M. Inc, The comparative study for solving fractional-order Fornberg-Whitham equation via $\rho$-Laplace transform, Symmetry, 13 (2021), 1–15. https://doi.org/10.3390/sym13050784 doi: 10.3390/sym13050784
    [23] M. Alesemi, N. Iqbal, T. Botmart, Novel analysis of the fractional-order system of non-linear partial differential equations with the exponential-decay kernel, Mathematics, 10 (2022), 1–17. https://doi.org/10.3390/math10040615 doi: 10.3390/math10040615
    [24] A. F. Qasim, M. O. Al-Amr, Approximate solution of the Kersten-Krasil'shchik coupled Kdv-mKdV system via reduced differential transform method, Eurasian J. Sci. Eng., 4 (2018), 1–9.
    [25] A. K. Kalkanli, S. Y. Sakovich, I. Yurdusen, Integrability of Kersten-Krasil'shchik coupled KdV-mKdV equations: singularity analysis and Lax pair, J. Math. Phys., 44 (2003), 1703–1708. https://doi.org/10.1063/1.1558903 doi: 10.1063/1.1558903
    [26] Y. C. Hon, E. G. Fan, Solitary wave and doubly periodic wave solutions for the Kersten-Krasil'shchik coupled KdV-mKdV system, Chaos Solitons Fract., 19 (2004), 1141–1146. https://doi.org/10.1016/S0960-0779(03)00302-3 doi: 10.1016/S0960-0779(03)00302-3
    [27] A. Goswami, Sushila, J. Singh, D. Kumar, Numerical computation of fractional Kersten-Krasil'shchik coupled KdV-mKdV system occurring in multi-component plasmas, AIMS Math., 5 (2020), 2346–2368. https://doi.org/10.3934/math.2020155 doi: 10.3934/math.2020155
    [28] W. J. Rui, X. M. Qi, Bilinear approach to quasi-periodic wave solutions of the Kersten-Krasil'shchik coupled KdV-mKdV system, Bound. Value Probl., 2016 (2016), 1–13. https://doi.org/10.1186/s13661-016-0634-3 doi: 10.1186/s13661-016-0634-3
    [29] M. K. Alaoui, K. Nonlaopon, A. M. Zidan, A. Khan, R. Shah, Analytical investigation of fractional-order Cahn-Hilliard and Gardner equations using two novel techniques, Mathematics, 10 (2022), 1–19. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
    [30] T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Math., 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693
    [31] M. X. Zhou, A. S. V. R. Kanth, K. Aruna, K. Raghavendar, H. Rezazadeh, M. Inc, et al., Numerical solutions of time fractional Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives, J. Funct. Space., 2021 (2021), 1–17. https://doi.org/10.1155/2021/9884027 doi: 10.1155/2021/9884027
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1585) PDF downloads(107) Cited by(47)

Article outline

Figures and Tables

Figures(12)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog