Research article

Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel

  • Received: 08 August 2021 Accepted: 30 September 2021 Published: 15 October 2021
  • MSC : 37C75, 93B05, 93B07, 65L07

  • This paper derived fractional derivatives with Atangana-Baleanu, Atangana-Toufik scheme and fractal fractional Atangana-Baleanu sense for the COVID-19 model. These are advanced techniques that provide effective results to analyze the COVID-19 outbreak. Fixed point theory is used to derive the existence and uniqueness of the fractional-order model COVID-19 model. We also proved the property of boundedness and positivity for the fractional-order model. The Atangana-Baleanu technique and Fractal fractional operator are used with the Sumudu transform to find reliable results for fractional order COVID-19 Model. The generalized Mittag-Leffler law is also used to construct the solution with the different fractional operators. Numerical simulations are performed for the developed scheme in the range of fractional order values to explain the effects of COVID-19 at different fractional values and justify the theoretical outcomes, which will be helpful to understand the outbreak of COVID-19 and for control strategies.

    Citation: Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel. Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel[J]. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046

    Related Papers:

  • This paper derived fractional derivatives with Atangana-Baleanu, Atangana-Toufik scheme and fractal fractional Atangana-Baleanu sense for the COVID-19 model. These are advanced techniques that provide effective results to analyze the COVID-19 outbreak. Fixed point theory is used to derive the existence and uniqueness of the fractional-order model COVID-19 model. We also proved the property of boundedness and positivity for the fractional-order model. The Atangana-Baleanu technique and Fractal fractional operator are used with the Sumudu transform to find reliable results for fractional order COVID-19 Model. The generalized Mittag-Leffler law is also used to construct the solution with the different fractional operators. Numerical simulations are performed for the developed scheme in the range of fractional order values to explain the effects of COVID-19 at different fractional values and justify the theoretical outcomes, which will be helpful to understand the outbreak of COVID-19 and for control strategies.



    加载中


    [1] J. F. W. Chan, K. H. Kok, Z. Zhu, Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Micr. Infect., 9 (2020), 221-236. doi: 10.1080/22221751.2020.1719902. doi: 10.1080/22221751.2020.1719902
    [2] World Health Organization, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance.
    [3] H. Lu, C. W. Stratton, Y. W. Tang, Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle, J. Med. Virol., 92 (2020), 401-402. doi: 10.1002/jmv.25678. doi: 10.1002/jmv.25678
    [4] W. Ji, W. Wang, X. Zhao, Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human, J. Med. Virol., 94 (2020), 433-440.
    [5] World Health Organization, Coronavirus disease 2019 (COVID-19): Situation Report, 2021.
    [6] W. E. Alnaser, M. Abdel-Aty, O. Al-Ubaydli, Mathematical prospective of coronavirus infections in Bahrain, Saudi Arabia and Egypt, Inf. Sci. Lett. B, 9 (2020), 51-64. doi: 10.18576/isl/090201. doi: 10.18576/isl/090201
    [7] W. Ming, J. V. Huang, C. J. P. Zhang, Breaking down of the healthcare system: Mathematical modelling for controlling the novel coronavirus (2019-nCoV) outbreak in Wuhan, China, BioRxiv, 2020. doi: 10.1101/2020.01.27.922443 doi: 10.1101/2020.01.27.922443
    [8] I. Nesteruk, Statistics-based predictions of coronavirus epidemic spreading in Mainland China, Innov. Biosyst. Bioeng., 4 (2020), 13-18.
    [9] M. Batista, Estimation of the final size of the coronavirus epidemic by SIR model, Research Gate, 2020. doi: 10.1101/2020.03.11.20024901. doi: 10.1101/2020.03.11.20024901
    [10] V. A. Okhuese, Mathematical predictions for COVID-19 as a global pendamic, 2020. doi: 10.1101/2020.03.19.20038794.
    [11] Pakistan population 1950-2020. Available from: https://www.worldometers.info/world-population/pakistan-population/.
    [12] Government of Pakistan COVID-19 health advisory platform by Ministry of National Health Services Regulations and Coordination, 2021. Available from: https://covid.gov.pk/.
    [13] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553-558. doi: 10.1101/2020.01.31.20019901. doi: 10.1101/2020.01.31.20019901
    [14] Y. Liu, A. A. Gayle, A. Wilder-Smith, J. Rocklöv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, J. Travel Med., 27 (2020), 021. doi: 10.1093/jtm/taaa021. doi: 10.1093/jtm/taaa021
    [15] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, A. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear Sci., 88 (2020), 105303. doi: 10.1016/j.cnsns.2020.105303. doi: 10.1016/j.cnsns.2020.105303
    [16] D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos Soliton. Fract., 134 (2020), 109761.
    [17] D. S. Hui, E. I. Azhar, Y. J. Kim, Z. A. Memish, M. D. Oh, A. Zumla, Middle East respiratory syndrome coronavirus: Risk factors and determinants of primary, household, and nosocomial transmission, Lancet Infect. Dis., 18 (2018), 217-227. doi: 10.1016/S1473-3099(18)30127-0. doi: 10.1016/S1473-3099(18)30127-0
    [18] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCoV) with fractional derivative, Alex. Eng. J., 59 (2020), 2379-2389. doi: 10.1016/j.aej.2020.02.033. doi: 10.1016/j.aej.2020.02.033
    [19] E. A. Kojabad, S. Rezapour, Approximate solutions of a sum-type fractional integro-differential equation by using Chebyshev and Legendre polynomials, Adv. Differ. Equ., 2017 (2017), 351. doi: 10.1186/s13662-017-1404-y. doi: 10.1186/s13662-017-1404-y
    [20] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705.
    [21] I. Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Math. Sci. Eng., 198 (1999), 340.
    [22] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives, Gordon & Breach, Switzerland, 1993.
    [23] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: info:doi/10.2298/TSCI160111018A.
    [24] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, Amsterdam, 1998.
    [25] D. Baleanu, A. Jajarmi, E. Bonyah, M. Hajipour, New aspects of poor nutrition in the life cycle within the fractional calculus, Adv. Differ. Equ., 2018 (2018), 230.
    [26] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton. Fract., 89 (2016), 447-454.
    [27] S. Jain, Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method, Eur. Phys. J. Plus, 133 (2018), 1-11. doi: 10.1140/epjp/i2018-11854-x. doi: 10.1140/epjp/i2018-11854-x
    [28] A. Atangana, S. Jain, A new numerical approximation of the fractal ordinary differential equation, Eur. Phys. J. Plus, 133 (2018), 1-15. doi: 10.1140/epjp/i2018-11895-1. doi: 10.1140/epjp/i2018-11895-1
    [29] A. Atangana, S. Jain, Models of fluid flowing in non-conventional media: new numerical analysis, Discrete Cont. Dyn-S., 13 (2020), 467. doi: 10.3934/dcdss.2020026. doi: 10.3934/dcdss.2020026
    [30] S. I. Araz, Analysis of a COVID-19 model: Optimal control, stability and simulations, Alex. Eng. J., 60 (2021), 647-658. doi: 10.1016/j.aej.2020.09.058. doi: 10.1016/j.aej.2020.09.058
    [31] A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: Theory methods and applications, Adv. Differ. Equ., 2020 (2020), 659
    [32] H. Kheiri, M. Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment, J. Comput. Appl. Math., 346 (2019), 323-339. doi: 10.1016/j.cam.2018.06.055. doi: 10.1016/j.cam.2018.06.055
    [33] C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708-2724. doi: 10.3934/mbe.2020148. doi: 10.3934/mbe.2020148
    [34] R. P. Yadav, R. Verma, A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China, Chaos Soliton. Fract., 140 (2020), 110124. doi: 10.1016/j.chaos.2020.110124. doi: 10.1016/j.chaos.2020.110124
    [35] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444.
    [36] W. Lin, Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl., 332 (2007), 709-726. doi: 10.1140/epjp/i2017-11717-0. doi: 10.1140/epjp/i2017-11717-0
    [37] A. N. Chatterjee, B. Ahmad, A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos Soliton. Fract., 147 (2021), 110952.
    [38] A. N. Chatterjee, F. A. Basir, A. Muqrin, M. Jayanta, I. Khan, SARS-CoV-2 infection with lytic and non-lytic immune responses: A fractional order optimal control theoretical study, Results Phy., 26 (2021), 104260. doi: 10.1016/j.rinp.2021.104260. doi: 10.1016/j.rinp.2021.104260
    [39] A. A. Alderremy, J. F. Gómez-Aguilar, Shaban Aly, Khaled M. Saad, A fuzzy fractional model of coronavirus (COVID-19) and its study with Legendre spectral method, Results Phy., 21 (2020), 103773. doi: 10.1016/j.rinp.2020.103773. doi: 10.1016/j.rinp.2020.103773
    [40] M. Rahman, M. Arfan, K. Shah, J. F. Gómez-Aguilar, Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy Caputo, random and ABC fractional order derivative, Chaos Soliton. Fract., 140 (2020), 110232. doi: 10.1016/j.chaos.2020.110232. doi: 10.1016/j.chaos.2020.110232
    [41] V. S. Panwar, P. S. Sheik Uduman, J. F. Gómez-Aguilar, Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives, Chaos Soliton. Fract., 145 (2021), 110757. doi: 10.1016/j.chaos.2021.110757. doi: 10.1016/j.chaos.2021.110757
    [42] A. H. Chatterjee, F. Al-Basir, A model for SARS-COV-2 infection with treatment, Comput. Math. Method. M., 2020 (2020), Article ID: 1352982. doi: 10.1155/2020/1352982. doi: 10.1155/2020/1352982
    [43] J. Mondal, P. Samui, A. N. Chatterjee, Optimal control strategies of non-pharmaceutical and pharmaceutical interventions for COVID-19 control, J. Interdiscip. Math., 24 (2021), 125-153. doi: 10.1080/09720502.2020.1833459. doi: 10.1080/09720502.2020.1833459
    [44] A. Zeb, E. Alzahrani, V. S. Erturk, G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class, Biomed. Res. Int., (2020), 3452402, doi: 10.1155/2020/3452402 doi: 10.1155/2020/3452402
    [45] Z. Zhang, A. Zeb, S. Hussain, E. Alzahrani, Dynamics of COVID-19 mathematical model with stochastic perturbation, Adv. Differ. Equ., 2020 (2020), 451. doi: 10.1186/s13662-020-02909-1. doi: 10.1186/s13662-020-02909-1
    [46] S. Bushnaq, T. Saeed, D. F. M. Torres, A. Zeb, Control of COVID-19 dynamics through a fractional-order model, Alex. Eng. J., 60 (2021), 3587-3592. doi: 10.1016/j.aej.2021.02.022. doi: 10.1016/j.aej.2021.02.022
    [47] A. Tesfay, T. Saeed, A. Zeb, D. Tesfay, A. Khalaf, Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion, Adv. Differ. Equ., 2021 (2021), 228, doi: 10.1186/s13662-021-03396-8 doi: 10.1186/s13662-021-03396-8
    [48] M. A. Alqudah, T. Abdeljawad, A. Zeb, I. U. Khan, F. Bozkurt, Effect of weather on the spread of COVID-19 using eigenspace decomposition, CMC-Comput. Mater. Con., 69 (2021), 3047-3063. doi: 10.32604/cmc.2021.017752. doi: 10.32604/cmc.2021.017752
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3435) PDF downloads(201) Cited by(42)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog